Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 177(4): 942-956.e14, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30955889

RESUMO

Plants are sessile and have to cope with environmentally induced damage through modification of growth and defense pathways. How tissue regeneration is triggered in such responses and whether this involves stem cell activation is an open question. The stress hormone jasmonate (JA) plays well-established roles in wounding and defense responses. JA also affects growth, which is hitherto interpreted as a trade-off between growth and defense. Here, we describe a molecular network triggered by wound-induced JA that promotes stem cell activation and regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 transcription stimulates CYCD6;1 expression, functions upstream of ERF115, and promotes regeneration. Soil penetration and response to nematode herbivory induce and require this JA-mediated regeneration response. Therefore, the JA tissue damage response pathway induces stem cell activation and regeneration and activates growth after environmental stress.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/metabolismo , Células-Tronco/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Herbivoria , Ácidos Indolacéticos/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo
2.
Plant Cell ; 32(2): 429-448, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852773

RESUMO

JASMONATE ZIM-DOMAIN (JAZ) transcriptional repressors are key regulators of jasmonate (JA) signaling in plants. At the resting stage, the C-terminal Jas motifs of JAZ proteins bind the transcription factor MYC2 to repress JA signaling. Upon hormone elicitation, the Jas motif binds the hormone receptor CORONATINE INSENSITIVE1, which mediates proteasomal degradation of JAZs and thereby allowing the Mediator subunit MED25 to activate MYC2. Subsequently, plants desensitize JA signaling by feedback generation of dominant JAZ splice variants that repress MYC2. Here we report the mechanistic function of Arabidopsis (Arabidopsis thaliana) MED25 in regulating the alternative splicing of JAZ genes through recruiting the splicing factors PRE-mRNA-PROCESSING PROTEIN 39a (PRP39a) and PRP40a. We demonstrate that JA-induced generation of JAZ splice variants depends on MED25 and that MED25 recruits PRP39a and PRP40a to promote the full splicing of JAZ genes. Therefore, MED25 forms a module with PRP39a and PRP40a to prevent excessive desensitization of JA signaling mediated by JAZ splice variants.


Assuntos
Processamento Alternativo/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Oxilipinas/metabolismo , Transdução de Sinais/fisiologia , Processamento Alternativo/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Isoleucina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fatores de Processamento de RNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcriptoma
3.
Plant Cell ; 31(9): 2187-2205, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31320481

RESUMO

Groucho/Thymidine uptake 1 (Gro/Tup1) family proteins are evolutionarily conserved transcriptional coregulators in eukaryotic cells. Despite their prominent function in transcriptional repression, little is known about their role in transcriptional activation and the underlying mechanism. Here, we report that the plant Gro/Tup1 family protein LEUNIG_HOMOLOG (LUH) activates MYELOCYTOMATOSIS2 (MYC2)-directed transcription of JAZ2 and LOX2 via the Mediator complex coactivator and the histone acetyltransferase HAC1. We show that the Mediator subunit MED25 physically recruits LUH to MYC2 target promoters that then links MYC2 with HAC1-dependent acetylation of Lys-9 of histone H3 (H3K9ac) to activate JAZ2 and LOX2 Moreover, LUH promotes hormone-dependent enhancement of protein interactions between MYC2 and its coactivators MED25 and HAC1. Our results demonstrate that LUH interacts with MED25 and HAC1 through its distinct domains, thus imposing a selective advantage by acting as a scaffold for MYC2 activation. Therefore, the function of LUH in regulating jasmonate signaling is distinct from the function of TOPLESS, another member of the Gro/Tup1 family that represses MYC2-dependent gene expression in the resting stage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arseniato Redutases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Transcricional/fisiologia , Acetilação , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Histonas , Lipoxigenases/genética , Lipoxigenases/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ativação Transcricional/genética
4.
Plant Cell ; 31(1): 106-127, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30610166

RESUMO

In tomato (Solanum lycopersicum), as in other plants, the immunity hormone jasmonate (JA) triggers genome-wide transcriptional changes in response to pathogen and insect attack. These changes are largely regulated by the basic helix-loop-helix (bHLH) transcription factor MYC2. The function of MYC2 depends on its physical interaction with the MED25 subunit of the Mediator transcriptional coactivator complex. Although much has been learned about the MYC2-dependent transcriptional activation of JA-responsive genes, relatively less studied is the termination of JA-mediated transcriptional responses and the underlying mechanisms. Here, we report an unexpected function of MYC2 in regulating the termination of JA signaling through activating a small group of JA-inducible bHLH proteins, termed MYC2-TARGETED BHLH1 (MTB1), MTB2, and MTB3. MTB proteins negatively regulate JA-mediated transcriptional responses via their antagonistic effects on the functionality of the MYC2-MED25 transcriptional activation complex. MTB proteins impair the formation of the MYC2-MED25 complex and compete with MYC2 to bind to its target gene promoters. Therefore, MYC2 and MTB proteins form an autoregulatory negative feedback circuit to terminate JA signaling in a highly organized manner. We provide examples demonstrating that gene editing tools such as CRISPR/Cas9 open up new avenues to exploit MTB genes for crop protection.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Plant Physiol ; 184(3): 1549-1562, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938743

RESUMO

Shade triggers important adaptive responses such as the shade-avoidance syndrome, which enable plants to respond to the depletion of photosynthetically active light. The basic helix-loop-helix transcription factors PHYTOCHROME INTERACTING FACTORS (PIFs) play a key role in the shade-avoidance syndrome network by regulating the biosynthesis of multiple phytohormones and the expression of cell expansion-related genes. Although much has been learned about the regulation of PIFs in response to shade at the protein level, relatively little is known about the PIF-dependent transcriptional regulation of shade-responsive genes. Mediator is an evolutionarily conserved transcriptional coactivator complex that bridges gene-specific transcription factors with the RNA polymerase II (Pol II) machinery to regulate gene transcription. Here, we report that tomato (Solanum lycopersicum) PIF4 plays an important role in shade-induced hypocotyl elongation by regulating the expression of genes that encode auxin biosynthesis and auxin signaling proteins. During this process, Mediator subunit25 (MED25) physically interacts with PIF4 at the promoter regions of PIF4 target genes and also recruits Pol II to induce gene transcription. Thus, MED25 directly bridges the communication between PIF4 and Pol II general transcriptional machinery to regulate shade-induced hypocotyl elongation. Overall, our results reveal a novel role of MED25 in PIF4-mediated transcriptional regulation under shade.


Assuntos
Hipocótilo/crescimento & desenvolvimento , Hipocótilo/genética , Luz , Fitocromo/genética , Fitocromo/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Aclimatação/genética , Aclimatação/fisiologia , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas
6.
Plant Cell ; 29(8): 1883-1906, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28733419

RESUMO

The hormone jasmonate (JA), which functions in plant immunity, regulates resistance to pathogen infection and insect attack through triggering genome-wide transcriptional reprogramming in plants. We show that the basic helix-loop-helix transcription factor (TF) MYC2 in tomato (Solanum lycopersicum) acts downstream of the JA receptor to orchestrate JA-mediated activation of both the wounding and pathogen responses. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 655 MYC2-targeted JA-responsive genes. These genes are highly enriched in Gene Ontology categories related to TFs and the early response to JA, indicating that MYC2 functions at a high hierarchical level to regulate JA-mediated gene transcription. We also identified a group of MYC2-targeted TFs (MTFs) that may directly regulate the JA-induced transcription of late defense genes. Our findings suggest that MYC2 and its downstream MTFs form a hierarchical transcriptional cascade during JA-mediated plant immunity that initiates and amplifies transcriptional output. As proof of concept, we showed that during plant resistance to the necrotrophic pathogen Botrytis cinerea, MYC2 and the MTF JA2-Like form a transcription module that preferentially regulates wounding-responsive genes, whereas MYC2 and the MTF ETHYLENE RESPONSE FACTOR.C3 form a transcription module that preferentially regulates pathogen-responsive genes.


Assuntos
Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Transcrição Gênica/efeitos dos fármacos , Motivos de Aminoácidos , Sítios de Ligação , Botrytis/fisiologia , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , Solanum lycopersicum/efeitos dos fármacos , Modelos Biológicos , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Análise de Sequência de RNA , Transcriptoma/genética
7.
Proc Natl Acad Sci U S A ; 114(42): E8930-E8939, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28973940

RESUMO

Jasmonoyl-isoleucine (JA-Ile), the active form of the plant hormone jasmonate (JA), is sensed by the F-box protein CORONATINE INSENSITIVE 1 (COI1), a component of a functional Skp-Cullin-F-box E3 ubiquitin ligase complex. Sensing of JA-Ile by COI1 rapidly triggers genome-wide transcriptional changes that are largely regulated by the basic helix-loop-helix transcription factor MYC2. However, it remains unclear how the JA-Ile receptor protein COI1 relays hormone-specific regulatory signals to the RNA polymerase II general transcriptional machinery. Here, we report that the plant transcriptional coactivator complex Mediator directly links COI1 to the promoters of MYC2 target genes. MED25, a subunit of the Mediator complex, brings COI1 to MYC2 target promoters and facilitates COI1-dependent degradation of jasmonate-ZIM domain (JAZ) transcriptional repressors. MED25 and COI1 influence each other's enrichment on MYC2 target promoters. Furthermore, MED25 physically and functionally interacts with HISTONE ACETYLTRANSFERASE1 (HAC1), which plays an important role in JA signaling by selectively regulating histone (H) 3 lysine (K) 9 (H3K9) acetylation of MYC2 target promoters. Moreover, the enrichment and function of HAC1 on MYC2 target promoters depend on COI1 and MED25. Therefore, the MED25 interface of Mediator links COI1 with HAC1-dependent H3K9 acetylation to activate MYC2-regulated transcription of JA-responsive genes. This study exemplifies how a single Mediator subunit integrates the actions of both genetic and epigenetic regulators into a concerted transcriptional program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Proteínas Nucleares/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arseniato Redutases/genética , Arseniato Redutases/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas Correpressoras , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Lisina/metabolismo , Proteínas Nucleares/genética , Oxilipinas/metabolismo , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Nicotiana/genética
8.
J Exp Bot ; 70(13): 3415-3424, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31089685

RESUMO

The Mediator complex is an essential, multisubunit transcriptional coactivator that is highly conserved in eukaryotes. Mediator interacts with gene-specific transcription factors, the RNA polymerase II transcriptional machinery, as well as several other factors involved in transcription, and acts as an integral hub to regulate various aspects of transcription. Recent studies of the plant Mediator complex have established that it functions in diverse aspects of plant development and fitness. Jasmonate (JA) is an oxylipin-derived plant hormone that regulates plant immunity and development. The basic helix-loop-helix transcription factor MYC2, which is a master regulator of JA signaling, orchestrates genome-wide transcriptional reprogramming of plant cells to coordinate defense- and growth-related processes. Here, we review the function of the plant Mediator complex in regulating JA signaling. We focus on the multifunctional Mediator subunit MED25, which emerges as an integrative hub for the transcriptional regulation of jasmonate signaling.


Assuntos
Proteínas de Arabidopsis , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Complexo Mediador , Oxilipinas/metabolismo , Imunidade Vegetal , Viridiplantae/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Complexo Mediador/genética , Complexo Mediador/metabolismo , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Viridiplantae/crescimento & desenvolvimento , Viridiplantae/imunologia
9.
Plant Cell ; 27(10): 2814-28, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26410299

RESUMO

Flowering time of plants must be tightly regulated to maximize reproductive success. Plants have evolved sophisticated signaling network to coordinate the timing of flowering in response to their ever-changing environmental conditions. Besides being a key immune signal, the lipid-derived plant hormone jasmonate (JA) also regulates a wide range of developmental processes including flowering time. Here, we report that the CORONATINE INSENSITIVE1 (COI1)-dependent signaling pathway delays the flowering time of Arabidopsis thaliana by inhibiting the expression of the florigen gene FLOWERING LOCUS T (FT). We provide genetic and biochemical evidence that the APETALA2 transcription factors (TFs) TARGET OF EAT1 (TOE1) and TOE2 interact with a subset of JAZ (jasmonate-ZIM domain) proteins and repress the transcription of FT. Our results support a scenario that, when plants encounter stress conditions, bioactive JA promotes COI1-dependent degradation of JAZs. Degradation of the JAZ repressors liberates the transcriptional function of the TOEs to repress the expression of FT and thereby triggers the signaling cascades to delay flowering. Our study identified interacting pairs of TF and JAZ transcriptional regulators that underlie JA-mediated regulation of flowering, suggesting that JA signals are converted into specific context-dependent responses by matching pairs of TF and JAZ proteins.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Plantas Geneticamente Modificadas , Domínios Proteicos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Cell ; 26(1): 263-79, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24399301

RESUMO

Plants have evolved sophisticated mechanisms for integration of endogenous and exogenous signals to adapt to the changing environment. Both the phytohormones jasmonate (JA) and ethylene (ET) regulate plant growth, development, and defense. In addition to synergistic regulation of root hair development and resistance to necrotrophic fungi, JA and ET act antagonistically to regulate gene expression, apical hook curvature, and plant defense against insect attack. However, the molecular mechanism for such antagonism between JA and ET signaling remains unclear. Here, we demonstrate that interaction between the JA-activated transcription factor MYC2 and the ET-stabilized transcription factor ETHYLENE-INSENSITIVE3 (EIN3) modulates JA and ET signaling antagonism in Arabidopsis thaliana. MYC2 interacts with EIN3 to attenuate the transcriptional activity of EIN3 and repress ET-enhanced apical hook curvature. Conversely, EIN3 interacts with and represses MYC2 to inhibit JA-induced expression of wound-responsive genes and herbivory-inducible genes and to attenuate JA-regulated plant defense against generalist herbivores. Coordinated regulation of plant responses in both antagonistic and synergistic manners would help plants adapt to fluctuating environments.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Nucleares/fisiologia , Oxilipinas/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Plant Cell ; 26(7): 3167-84, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25005917

RESUMO

To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.


Assuntos
Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Transdução de Sinais , Solanum lycopersicum/fisiologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Aminoácidos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Interações Hospedeiro-Patógeno , Indenos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/genética , Solanum lycopersicum/imunologia , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/imunologia , Pseudomonas syringae/fisiologia , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética
12.
Plant Cell ; 25(6): 2102-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23757399

RESUMO

Both blue light (BL) and auxin are essential for phototropism in Arabidopsis thaliana. However, the mechanisms by which light is molecularly linked to auxin during phototropism remain elusive. Here, we report that phytochrome interacting factoR4 (PIF4) and PIF5 act downstream of the BL sensor phototropin1 (PHOT1) to negatively modulate phototropism in Arabidopsis. We also reveal that PIF4 and PIF5 negatively regulate auxin signaling. Furthermore, we demonstrate that PIF4 directly activates the expression of the auxin/indole-3-acetic acid (IAA) genes IAA19 and IAA29 by binding to the G-box (CACGTG) motifs in their promoters. Our genetic assays demonstrate that IAA19 and IAA29, which physically interact with auxin response factor7 (ARF7), are sufficient for PIF4 to negatively regulate auxin signaling and phototropism. This study identifies a key step of phototropic signaling in Arabidopsis by showing that PIF4 and PIF5 link light and auxin.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Ácidos Indolacéticos/farmacologia , Luz , Arabidopsis/efeitos dos fármacos , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Hipocótilo/efeitos dos fármacos , Hipocótilo/genética , Hipocótilo/efeitos da radiação , Immunoblotting , Mutação , Fototropismo/efeitos dos fármacos , Fototropismo/genética , Fototropismo/efeitos da radiação , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/efeitos da radiação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
PLoS Genet ; 9(4): e1003422, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23593022

RESUMO

As a master regulator of jasmonic acid (JA)-signaled plant immune responses, the basic helix-loop-helix (bHLH) Leu zipper transcription factor MYC2 differentially regulates different subsets of JA-responsive genes through distinct mechanisms. However, how MYC2 itself is regulated at the protein level remains unknown. Here, we show that proteolysis of MYC2 plays a positive role in regulating the transcription of its target genes. We discovered a 12-amino-acid element in the transcription activation domain (TAD) of MYC2 that is required for both the proteolysis and the transcriptional activity of MYC2. Interestingly, MYC2 phosphorylation at residue Thr328, which facilitates its turnover, is also required for the MYC2 function to regulate gene transcription. Together, these results reveal that phosphorylation-coupled turnover of MYC2 stimulates its transcription activity. Our results exemplify that, as with animals, plants employ an "activation by destruction" mechanism to fine-tune their transcriptome to adapt to their ever-changing environment.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Imunidade Vegetal/genética , Motivos de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteólise , Transcrição Gênica/genética
14.
PLoS Genet ; 9(12): e1003964, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24348260

RESUMO

In response to insect attack and mechanical wounding, plants activate the expression of genes involved in various defense-related processes. A fascinating feature of these inducible defenses is their occurrence both locally at the wounding site and systemically in undamaged leaves throughout the plant. Wound-inducible proteinase inhibitors (PIs) in tomato (Solanum lycopersicum) provide an attractive model to understand the signal transduction events leading from localized injury to the systemic expression of defense-related genes. Among the identified intercellular molecules in regulating systemic wound response of tomato are the peptide signal systemin and the oxylipin signal jasmonic acid (JA). The systemin/JA signaling pathway provides a unique opportunity to investigate, in a single experimental system, the mechanism by which peptide and oxylipin signals interact to coordinate plant systemic immunity. Here we describe the characterization of the tomato suppressor of prosystemin-mediated responses8 (spr8) mutant, which was isolated as a suppressor of (pro)systemin-mediated signaling. spr8 plants exhibit a series of JA-dependent immune deficiencies, including the inability to express wound-responsive genes, abnormal development of glandular trichomes, and severely compromised resistance to cotton bollworm (Helicoverpa armigera) and Botrytis cinerea. Map-based cloning studies demonstrate that the spr8 mutant phenotype results from a point mutation in the catalytic domain of TomLoxD, a chloroplast-localized lipoxygenase involved in JA biosynthesis. We present evidence that overexpression of TomLoxD leads to elevated wound-induced JA biosynthesis, increased expression of wound-responsive genes and, therefore, enhanced resistance to insect herbivory attack and necrotrophic pathogen infection. These results indicate that TomLoxD is involved in wound-induced JA biosynthesis and highlight the application potential of this gene for crop protection against insects and pathogens.


Assuntos
Proteínas de Cloroplastos/genética , Ciclopentanos/metabolismo , Lipoxigenase/genética , Lipoxigenases/genética , Oxilipinas/metabolismo , Imunidade Vegetal , Solanum lycopersicum/enzimologia , Animais , Botrytis/patogenicidade , Cloroplastos/enzimologia , Regulação da Expressão Gênica de Plantas , Herbivoria , Lipoxigenases/imunologia , Dados de Sequência Molecular , Fenótipo , Doenças das Plantas/genética , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Transdução de Sinais , Ferimentos e Lesões
15.
Plant Cell ; 24(7): 2898-916, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22822206

RESUMO

Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)-triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Nucleares/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia , Ácido Abscísico/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA , Flores/citologia , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Germinação , Mutação , Proteínas Nucleares/metabolismo , Oxilipinas/metabolismo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Plântula/citologia , Plântula/genética , Plântula/fisiologia , Sementes/citologia , Sementes/genética , Sementes/fisiologia , Fatores de Tempo
16.
Plant Cell ; 23(9): 3335-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21954460

RESUMO

The root stem cell niche, which in the Arabidopsis thaliana root meristem is an area of four mitotically inactive quiescent cells (QCs) and the surrounding mitotically active stem cells, is critical for root development and growth. We report here that during jasmonate-induced inhibition of primary root growth, jasmonate reduces root meristem activity and leads to irregular QC division and columella stem cell differentiation. Consistently, jasmonate reduces the expression levels of the AP2-domain transcription factors PLETHORA1 (PLT1) and PLT2, which form a developmentally instructive protein gradient and mediate auxin-induced regulation of stem cell niche maintenance. Not surprisingly, the effects of jasmonate on root stem cell niche maintenance and PLT expression require the functioning of MYC2/JASMONATE INSENSITIVE1, a basic helix-loop-helix transcription factor that involves versatile aspects of jasmonate-regulated gene expression. Gel shift and chromatin immunoprecipitation experiments reveal that MYC2 directly binds the promoters of PLT1 and PLT2 and represses their expression. We propose that MYC2-mediated repression of PLT expression integrates jasmonate action into the auxin pathway in regulating root meristem activity and stem cell niche maintenance. This study illustrates a molecular framework for jasmonate-induced inhibition of root growth through interaction with the growth regulator auxin.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Meristema/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/citologia , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
17.
Plant Cell ; 22(11): 3692-709, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21045165

RESUMO

Recent identification of the Arabidopsis thaliana tyrosylprotein sulfotransferase (TPST) and a group of Tyr-sulfated peptides known as root meristem growth factors (RGFs) highlights the importance of protein Tyr sulfation in plant growth and development. Here, we report the action mechanism of TPST in maintenance of the root stem cell niche, which in the Arabidopsis root meristem is an area of four mitotically inactive quiescent cells plus the surrounding mitotically active stem cells. Mutation of TPST leads to defective maintenance of the root stem cell niche, decreased meristematic activity, and stunted root growth. We show that TPST expression is positively regulated by auxin and that mutation of this gene affects auxin distribution by reducing local expression levels of several PIN genes and auxin biosynthetic genes in the stem cell niche region. We also show that mutation of TPST impairs basal- and auxin-induced expression of the PLETHORA (PLT) stem cell transcription factor genes and that overexpression of PLT2 rescues the root meristem defects of the loss-of-function mutant of TPST. Together, these results support that TPST acts to maintain root stem cell niche by regulating basal- and auxin-induced expression of PLT1 and PLT2. TPST-dependent sulfation of RGFs provides a link between auxin and PLTs in regulating root stem cell niche maintenance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Nicho de Células-Tronco , Sulfotransferases/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/anatomia & histologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Meristema/anatomia & histologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Filogenia , Raízes de Plantas/metabolismo , Transdução de Sinais/fisiologia , Sulfotransferases/classificação , Sulfotransferases/genética , Fatores de Transcrição/genética
18.
Mol Plant ; 15(8): 1329-1346, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780296

RESUMO

The plant hormone jasmonate (JA) regulates plant immunity and adaptive growth by orchestrating a genome-wide transcriptional program. Key regulators of JA-responsive gene expression include the master transcription factor MYC2, which is repressed by the conserved Groucho/Tup1-like corepressor TOPLESS (TPL) in the resting state. However, the mechanisms underlying TPL-mediated transcriptional repression of MYC2 activity and hormone-dependent switching between repression and de-repression remain enigmatic. Here, we report the regulation of TPL activity and JA signaling by reversible acetylation of TPL. We found that the histone acetyltransferase GCN5 could mediate TPL acetylation, which enhances its interaction with the NOVEL-INTERACTOR-OF-JAZ (NINJA) adaptor and promotes its recruitment to MYC2 target promoters, facilitating transcriptional repression. Conversely, TPL deacetylation by the histone deacetylase HDA6 weakens TPL-NINJA interaction and inhibits TPL recruitment to MYC2 target promoters, facilitating transcriptional activation. In the resting state, the opposing activities of GCN5 and HDA6 maintain TPL acetylation homeostasis, promoting transcriptional repression activity of TPL. In response to JA elicitation, HDA6 expression is transiently induced, resulted in decreased TPL acetylation and repressor activity, thereby transcriptional activation of MYC2 target genes. Thus, the GCN5-TPL-HDA6 module maintains the homeostasis of acetylated TPL, thereby determining the transcriptional state of JA-responsive genes. Our findings uncovered a mechanism by which the TPL corepressor activity in JA signaling is actively tuned in a rapid and reversible manner.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Correpressoras/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/metabolismo , Oxilipinas/metabolismo , Proteínas Repressoras/metabolismo
19.
Curr Opin Plant Biol ; 57: 78-86, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32777679

RESUMO

Upon perception by plant cells, the immunity hormone jasmonate (JA) triggers a genome-wide transcriptional program, which is largely regulated by the master transcription factor MYC2. The function of MYC2 depends on its physical and functional interaction with MED25, a subunit of the Mediator transcriptional co-activator complex. In addition to interacting with MYC2 and RNA polymerase II for preinitiation complex formation, MED25 also interacts with multiple genetic and epigenetic regulators and controls almost every step of MYC2-dependent transcription, including nuclear hormone receptor activation, epigenetic regulation, mRNA processing, transcriptional termination, and chromatin loop formation. These diversified functions have ascribed MED25 to a signal-processing and signal-integrating center during JA-regulated gene transcription. This review is focused on the interactions of MED25 with diverse transcriptional regulators and how these mechanistic interactions contribute to the initiation, amplification, and fine tuning of the transcriptional output of JA signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Oxilipinas
20.
Plant Signal Behav ; 13(5): e1403709, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29125388

RESUMO

Perception of the plant hormone jasmonoyl-isoleucine (JA-Ile) involves the formation of a co-receptor complex between COI1, the F-box subunit of a SCF-type E3 ubiquitin ligase, and its substrates, a group of jasmonate ZIM-domain (JAZ) transcriptional repressors. In recent studies, we show that MED25, a subunit of the Arabidopsis Mediator, physically and functionally interacts with COI1 and the master transcription factor MYC2 on MYC2 target promoters. Here we provide evidence that MED25 also physically interacts with a subset of JAZ proteins. Therefore, in term of their interaction with Mediator, the JA-Ile co-receptor complex SCFCOI1-JAZs together with the master transcription factor MYC2 resembles the nuclear hormone receptor system of metazoans. In addition, we show that the plant MED25 and its animal counterpart also cooperates with similar epigenetic regulators in distinct signaling pathways. Our study reveals a scenario that plants and animals have evolved distinct, yet largely similar, mechanism for nuclear hormone receptor activation at the level of transcriptional regulation.


Assuntos
Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Isoleucina/análogos & derivados , Isoleucina/metabolismo , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa