Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
BMC Microbiol ; 23(1): 171, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337143

RESUMO

Mounting evidence has linked changes in human gut microbiota to proton pump inhibitor (PPI) use. Accordingly, multiple studies have analyzed the gut microbiomes of PPI users, but PPI-microbe interactions are still understudied. Here, we performed a meta-analysis of four studies with available 16S rRNA gene amplicon sequencing data to uncover the potential changes in human gut microbes among PPI users. Despite some differences, we found common features of the PPI-specific microbiota, including a decrease in the Shannon diversity index and the depletion of bacteria from the Ruminococcaceae and Lachnospiraceae families, which are crucial short-chain fatty acid-producers. Through training based on multiple studies, using a random forest classification model, we further verified the representativeness of the six screened gut microbial genera and 20 functional genes as PPI-related biomarkers, with AUC values of 0.748 and 0.879, respectively. Functional analysis of the PPI-associated 16S rRNA microbiome revealed enriched carbohydrate- and energy-associated genes, mostly encoding fructose-1,6-bisphosphatase and pyruvate dehydrogenase, among others. In this study, we have demonstrated alterations in bacterial abundance and functional metabolic potential related to PPI use, as a basis for future studies on PPI-induced adverse effects.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Inibidores da Bomba de Prótons/farmacologia , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes/microbiologia , Bactérias/genética , Clostridiales/genética
2.
Pharmacol Res ; 194: 106867, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37499703

RESUMO

Most diets and medications enhance host health via microbiota-dependent ways, but it is in the present situation of untargeted regulation. Non-targeted regulation may lead to the ineffectiveness of dietary supplements or drug treatment. Microbiota-directed food, aiming to improve diseases by targeting specific microbes without affecting other bacteria, have been proposed to deal with this problem. However, there is currently no universally applicable method to explore such foods or drugs. In this review, thirty studies on recent efforts in microbiota directed diets and medications are summarized from various databases. The methods used to find new foods and medications are primarily divided into four groups depending on the experimental models: in vivo and in vitro, as well as predictions based on bioinformatics. We also discuss their implementation, interpretation, and respective limitations, and describe the present situation. We further put forward a framework for microbiota-directed foods and medicine according to above methods and other microbiome manipulation, which will spur precision medicine.


Assuntos
Microbioma Gastrointestinal , Microbiota , Dieta , Suplementos Nutricionais , Desenho de Fármacos
3.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272431

RESUMO

Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.

4.
Crit Rev Food Sci Nutr ; : 1-19, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37326367

RESUMO

The human gut microbiota plays numerous roles in regulating host growth, the immune system, and metabolism. Age-related changes in the gut environment lead to chronic inflammation, metabolic dysfunction, and illness, which in turn affect aging and increase the risk of neurodegenerative disorders. Local immunity is also affected by changes in the gut environment. Polyamines are crucial for cell development, proliferation, and tissue regeneration. They regulate enzyme activity, bind to and stabilize DNA and RNA, have antioxidative properties, and are necessary for the control of translation. All living organisms contain the natural polyamine spermidine, which has anti-inflammatory and antioxidant properties. It can regulate protein expression, prolong life, and improve mitochondrial metabolic activity and respiration. Spermidine levels experience an age-related decrease, and the development of age-related diseases is correlated with decreased endogenous spermidine concentrations. As more than just a consequence, this review explores the connection between polyamine metabolism and aging and identifies advantageous bacteria for anti-aging and metabolites they produce. Further research is being conducted on probiotics and prebiotics that support the uptake and ingestion of spermidine from food extracts or stimulate the production of polyamines by gut microbiota. This provides a successful strategy to increase spermidine levels.

5.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047694

RESUMO

The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia-Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Camundongos , Humanos , Animais , Colite Ulcerativa/terapia , Colite Ulcerativa/tratamento farmacológico , Saccharomyces cerevisiae , Colite/terapia , Colite/tratamento farmacológico , Colo/patologia , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
6.
J Transl Med ; 20(1): 387, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36059002

RESUMO

BACKGROUND: The association between oral dysbiosis and chronic kidney disease (CKD) has gained increasing attention in recent years. Diabetes and hypertension are the most common conditions in CKD. However, a case-control study with matched confounding variables on the salivary microbiome in CKD and the influence of diabetes and hypertension on the microbiome has never been reported. METHODS: In our study, we compared the salivary microbiome profile between patients with CKD and healthy controls (HC) using 16S ribosomal DNA sequencing and examine its association with diabetes, hypertension, and immunity. RESULTS: We observed that the bacterial community was skewed in the saliva of CKD, with increased Lautropia and Pseudomonas, and decreased Actinomyces, Prevotella, Prevotella 7, and Trichococcus. No difference in the bacterial community between the CKD patients complicated with and without diabetes, and between those with and without hypertension. Prevotella 7 declined in CKD patients with/without hypertension with respect to HC, while Pseudomonas increased in CKD patients with/without hypertension. Pseudomonas was negatively associated with immunoglobin G in CKD patients. Both CKD patients with positive and negative antistreptolysin O had declined Prevotella 7 and Trichococcus compared to HC, whereas increased Pseudomonas. CONCLUSIONS: Our study identifies a distinct bacterial saliva microbiome in CKD patients characterized by alteration in composition. We unravel here that the co-occurrence diseases of diabetes and hypertension are not associated with specific bacterial alterations, suggesting that bacterial dysbiosis in saliva plays a role in renal damage regardless of the occurrence of diabetes and hypertension.


Assuntos
Diabetes Mellitus , Hipertensão , Microbiota , Insuficiência Renal Crônica , Bactérias , Estudos de Casos e Controles , Disbiose/complicações , Disbiose/microbiologia , Humanos , Hipertensão/complicações , RNA Ribossômico 16S/genética , Insuficiência Renal Crônica/complicações , Saliva
7.
Crit Rev Food Sci Nutr ; : 1-17, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36168909

RESUMO

The application of probiotics is limited by the loss of survival due to food processing, storage, and gastrointestinal tract. Encapsulation is a key technology for overcoming these challenges. The review focuses on the latest progress in probiotic encapsulation since 2020, especially precision engineering on microbial surfaces and microbial-mediated role. Currently, the encapsulation materials include polysaccharides and proteins, followed by lipids, which is a traditional mainstream trend, while novel plant extracts and polyphenols are on the rise. Other natural materials and processing by-products are also involved. The encapsulation types are divided into rough multicellular encapsulation, precise single-cell encapsulation, and microbial-mediated encapsulation. Recent emerging techniques include cryomilling, 3D printing, spray-drying with a three-fluid coaxial nozzle, and microfluidic. Encapsulated probiotics applied in food is an upward trend in which "classic probiotic foods" (yogurt, cheese, butter, chocolate, etc.) are dominated, supplemented by "novel probiotic foods" (tea, peanut butter, and various dry-based foods). Future efforts mainly include the effect of novel encapsulation materials on probiotics in the gut, encapsulation strategy oriented by microbial enthusiasm and precise encapsulation, development of novel techniques that consider both cost and efficiency, and co-encapsulation of multiple strains. In conclusion, encapsulation provides a strong impetus for the food application of probiotics.

8.
Crit Rev Food Sci Nutr ; 62(6): 1427-1452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33198506

RESUMO

The oral antibiotic therapies administered widely to people and animals can cause gut dysbiosis and barrier disruption inevitably. Increasing attention has been directed toward antibiotic-induced gut dysbiosis, which involves a loss of diversity, changes in the abundances of certain taxa and consequent effects on their metabolic capacity, and the spread of antibiotic-resistant bacterial strains. Treatment with beta-lactam, glycopeptide, and macrolide antibiotics is associated with the depletion of beneficial commensal bacteria in the genera Bifidobacterium and Lactobacillus. The gut microbiota is a reservoir for antibiotic resistance genes, the prevalence of which increases sharply after antibiotic ingestion. The intestinal barrier, which comprises secretory, physical, and immunological barriers, is also a target of antibiotics. Antibiotic induced changes in the gut microbiota composition could induce weakening of the gut barrier through changes in mucin, cytokine, and antimicrobial peptide production by intestinal epithelial cells. Reports have indicated that dietary interventions involving prebiotics, probiotics, omega-3 fatty acids, and butyrate supplementation, as well as fecal microbiota transplantation, can alleviate antibiotic-induced gut dysbiosis and barrier injuries. This review summarizes the characteristics of antibiotic-associated gut dysbiosis and barrier disruption, as well as the strategies for alleviating this condition. This information is intended to provide a foundation for the exploration of safer, more efficient, and affordable strategies to prevent or relieve antibiotic-induced gut injuries.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Antibacterianos/toxicidade , Disbiose/induzido quimicamente , Disbiose/prevenção & controle , Humanos , Lactobacillus
9.
Crit Rev Food Sci Nutr ; : 1-25, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36537331

RESUMO

The gut microbiota influences many aspects of the host, including immune system maturation, nutrient absorption and metabolism, and protection from pathogens. Increasing evidences from cohort and animal studies indicate that changes in the gut microbiota early in life increases the risk of developing specific diseases early and later in life. Therefore, it is becoming increasingly important to identify specific disease prevention or therapeutic solutions targeting the gut microbiota, especially during infancy, which is the window of the human gut microbiota establishment process. In this review, we provide an overview of current knowledge concerning the relationship between disturbances in the gut microbiota early in life and health consequences later in life (e.g., necrotizing enterocolitis, celiac disease, asthma, allergies, autism spectrum disorders, overweight/obesity, diabetes and growth retardation), with a focus on changes in the gut microbiota prior to disease onset. In addition, we summarize and discuss potential microbiota-based interventions early in life (e.g., diet adjustments, probiotics, prebiotics, fecal microbiota transplantation, environmental changes) to promote health or prevent the development of specific diseases. This knowledge should aid the understanding of early life microbiology and inform the development of prediction and prevention measures for short- and long-term health disorders based on the gut microbiota.

10.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997270

RESUMO

Latilactobacillus sakei is used extensively in industrial production and food fermentations. The species is primarily derived from fermented meat and vegetable products and is also found in human feces. Genomics and metabolomics have revealed unique metabolic pathways in L. sakei and molecular mechanisms underlying its competitive advantages in different habitats, which are mostly attributed to its flexible carbohydrate metabolism, cold tolerance, acid and salt tolerance, ability to cope with oxygen changes, and heme uptake. In recent years, probiotic effects of L. sakei and its metabolites have been identified, including the ability to effectively alleviate metabolic syndrome, inflammatory bowel disease, and atopic dermatitis. This review summarizes the genomic and metabolic characteristics of L. sakei and its metabolites and describes their applications, laying a foundation for their expanded use across the food and healthcare industries.

11.
Acta Pharmacol Sin ; 43(6): 1473-1483, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34654875

RESUMO

Most studies regarding the beneficial effect of sulforaphane (SFN) on non-alcoholic fatty liver disease (NAFLD) have focused on nuclear factor E2-related factor 2 (Nrf2). But the molecular mechanisms underlying the beneficial effect of SFN in the treatment of NAFLD remain controversial. Fibroblast growth factor (FGF) 21 is a member of the FGF family expressed mainly in liver but also in adipose tissue, muscle and pancreas, which functions as an endocrine factor and has been considered as a promising therapeutic candidate for the treatment of NAFLD. In the present study we investigated whether FGF21 was involved in the therapeutic effect of SFN against NAFLD. C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to generate NAFLD and continued on the HFD for additional 6 weeks with or without SFN treatment. We showed that administration of SFN (0.56 g/kg) significantly ameliorated hepatic steatosis and inflammation in NAFLD mice, along with the improved glucose tolerance and insulin sensitivity, through suppressing the expression of proteins responsible for hepatic lipogenesis, while enhancing proteins for hepatic lipolysis and fatty acids oxidation. SFN administration significantly increased hepatic expression of FGFR1 and fibroblast growth factor 21 (FGF21) in NAFLD mice, along with decreased phosphorylation of p38 MAPK (the downstream of FGF21). HepG2 cells were treated in vitro with FFAs (palmitic acid and oleic acid) followed by different concentrations of SFN. We showed that the effects of SFN on FGF21 and FGFR1 protein expression were replicated in FFAs-treated HepG2 cells. Moreover, the increased FGFR1 protein occurred earlier than increased FGF21 protein. Interestingly, the rapid effect of SFN on FGFR1 protein was not regulated by the FGFR1 gene transcription. Knockdown of FGFR1 and p38 genes weakened SFN-reduced lipid deposition in FFAs-treated HepG2 cells. SFN administration in combination with rmFGF21 (1.5 mg/kg, i.p., every other day) for 3 weeks further suppressed hepatic steatosis in NAFLD mice. In conclusion, SFN ameliorates lipid metabolism disorders in NAFLD mice by upregulating FGF21/FGFR1 pathway. Our results verify that SFN may become a promising intervention to treat or relieve NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica , Ácidos Graxos não Esterificados/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Isotiocianatos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Sulfóxidos
12.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055188

RESUMO

In a previous study, we uncovered three immune-responsive patterns of gut microbes using an in vitro mesenteric lymph node cell suspension model, abbreviated as the MLN model hereafter. We used Akkermansia muciniphila and Clostridium butyricum as the first group directly inducing an immune response, Bifidobacterium sp. and Bacteroides sp. as the second group evoking an immune response with the help of stimuli (anti-CD3 and anti-CD28 antibodies), and Lactobacillus sp. as the third group blunting the immune response with or without stimuli. Our group previously clarified the immune-activation characteristics of A. muciniphila and linked its in vivo immune induction effect in GF and SPF mice under homeostasis. In the present study, we supplemented the characteristics of C. butyricum and B. bifidum in the in vitro MLN model and addressed the specific elements of the model. Finally, we used an in vivo TNBS-challenge model to show the functional differences between these species with different response patterns in vitro. The results showed that C. butyricum and B. bifidum evoked an immune response in vitro in a dose-dependent and strain-unique manner. Although TLR2, rather than TLR4, is indispensable for immune activation in the present in vitro model, it may not involve interaction between TLR2 and bacterial ligands. Like the PBMC model, the present in vitro MLN model is highly dependent on cell resources and should be given more attention when used to conduct a quantitative comparison. Finally, a mixture of two strong immunogenic strains, A. muciniphila and C. butyricum, significantly increased the mortality of TNBS-challenged (2,4,6-trinitrobenzene sulfonic acid, TNBS) mice, indicating a possible link between the in vitro MLN model and in vivo functional evaluation. However, more evidence is needed to clarify the associations and underlying mechanisms.


Assuntos
Bifidobacterium/imunologia , Clostridium butyricum/imunologia , Linfonodos/citologia , Ácido Trinitrobenzenossulfônico/efeitos adversos , Animais , Técnicas de Cocultura , Linfonodos/imunologia , Linfonodos/microbiologia , Masculino , Mesentério , Camundongos , Modelos Biológicos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
13.
Can J Infect Dis Med Microbiol ; 2022: 6432750, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36193094

RESUMO

Background: The beneficial effects of probiotic supplementation standard antibiotic therapies for Helicobacter pylori infection have been verified, but the ability of probiotic monotherapy to eradicate H. pylori remains unclear. Aim: To evaluate the accuracy and efficacy of specific Lactobacillus strains against H. pylori infection. Methods: Seventy-eight patients with H. pylori infection were treated with strain L. crispatus G14-5M (L. crispatus CCFM1118) or L. helveticus M2-09-R02-S146 (L. helveticus CCFM1121) or L. plantarum CCFM8610 at a dose of 2 g twice daily for one month. 14C-urea breath test, the gastrointestinal symptom rating scale, serum pepsinogen concentrations, and serum cytokine concentrations of patients were measured at baseline and end-of-trial to analyze the effect of the Lactobacillus strains in eradicating H. pylori infection and reducing gastrointestinal discomfort in patients. In addition, the composition and abundance of the intestinal microbiota of patients were also measured at end-of-trial. Results: The 14C-urea breath test value of the three Lactobacillus treatment groups had decreased significantly, and the eradication rate of H. pylori had increased by the end of the trial. In particular, the eradication rate in the G14-5M treatment group was significantly higher than the placebo group (70.59% vs. 15.38%, P=0.0039), indicating that one-month administration of the G14-5M regimen was sufficient to eradicate H. pylori infection. The ingestion of Lactobacillus strains also ameliorated the gastrointestinal symptom rating scale scores, and the serum interleukin-8 concentrations of H. pylori-infected patients appeared to modulate the gut microbiota of patients. However, none of the Lactobacillus strains had a significant effect on general blood physiological characteristics, serum tumor necrosis factor α concentrations, or serum pepsinogen concentrations in the patients. Conclusion: Three Lactobacillus strains significantly alleviate the gastrointestinal discomfort and the gastric inflammatory response of H. pylori-infected patients. The activity of probiotics in eradicating H. pyloriinfection may be species/strain specific.

14.
Environ Microbiol ; 23(6): 3164-3181, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33876566

RESUMO

Sulfate-reducing bacteria (SRB) are widespread in human guts, yet their expansion has been linked to colonic diseases. We report the isolation, sequencing and physiological characterization of strain QI0027T , a novel SRB species belonging to the class Desulfovibrionia. Metagenomic sequencing of stool samples from 45 Chinese individuals, and comparison with 1690 Desulfovibrionaceae metagenome-assembled genomes recovered from humans of diverse geographic locations, revealed the presence of QI0027T in 22 further individuals. QI0027T encoded nitrogen fixation genes and based on the acetylene reduction assay, actively fixed nitrogen. Transcriptomics revealed that QI0027T overexpressed 42 genes in nitrogen-limiting conditions compared to cultures supplemented with ammonia, including genes encoding nitrogenases, a urea uptake system and the urease complex. Reanalyses of 835 public stool metatranscriptomes showed that nitrogenase genes from Desulfovibrio bacteria were expressed in six samples suggesting that nitrogen fixation might be active in the gut environment. Although frequently thought of as a nutrient-rich environment, nitrogen fixation can occur in the human gut. Animals are often nitrogen limited and have evolved diverse strategies to capture biologically active nitrogen, ranging from amino acid transporters to stable associations with beneficial microbes that provide fixed nitrogen. QI0027T is the first Desulfovibrio human isolate for which nitrogen fixation has been demonstrated, suggesting that some sulfate-reducing bacteria could also play a role in the availability of nitrogen in the gut.


Assuntos
Desulfovibrio , Fixação de Nitrogênio , Animais , Bactérias/metabolismo , Desulfovibrio/genética , Desulfovibrio/metabolismo , Humanos , Nitrogenase/metabolismo , Oxirredução , Filogenia , Sulfatos
15.
Crit Rev Food Sci Nutr ; 61(21): 3518-3536, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32757948

RESUMO

Bacteroides, an abundant genus in the intestines of mammals, has been recently considered as the next generation probiotics (NGP) candidate due to its potential role in promoting host health. However, the role of Bacteroides in the development of intestinal dysfunctions such as diarrhea, inflammatory bowel disease, and colorectal cancer should not be overlooked. In the present study, we focused on nine most widely occurred and abundant Bacteroides species and discussed their roles in host immunity, glucose and lipid metabolism and the prevention or induction of diseases. Besides, we also discussed the current methods used in the safety evaluation of Bacteroides species and key opinions about the concerns of these strains for the future use.


Assuntos
Doenças Inflamatórias Intestinais , Probióticos , Animais , Bacteroides , Diarreia , Humanos , Intestinos
16.
Appl Microbiol Biotechnol ; 105(21-22): 8427-8440, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34625821

RESUMO

Aging is associated with gut microbiota alterations, characterized by changes in intestinal microbial diversity and composition. However, no study has yet focused on investigating age-related changes in the low-abundant but potentially beneficial subpopulations of gut lactic acid bacteria (LAB) and Bifidobacterium. Our study found that the subjects' age correlated negatively with the alpha diversity of the gut bifidobacterial microbiota, and such correlation was not observed in the gut LAB subpopulation. Principal coordinate analysis (PCoA) and analysis of distribution of operational taxonomic units (OTUs) revealed that the structure and composition of the gut bifidobacterial subpopulation of the longevous elderly group were rather different from that of the other three age groups. The same analyses were applied to identify age-dependent characteristics of the gut LAB subpopulation, and the results revealed that the gut LAB subpopulation of young adults was significantly different from that of all three elderly groups. Our study identified several potentially beneficial bacteria (e.g., Bifidobacterium breve and Bifidobacterium longum) that were enriched in the longevous elderly group (P < 0.05), and the relative abundance of Bifidobacterium adolescentis decreased significantly with the increase in age (P < 0.05). Although both bifidobacteria and LAB are generally considered as health-promoting taxa, their age-dependent distribution varied from each other, suggesting their different life stage changes and potentially different functional roles. This study provided novel species-level gut bifidobacterial and LAB microbiota profiles of a large cohort of subjects and identified several age-or longevity-associated features and biomarkers. KEY POINTS: • The alpha diversity of the gut bifidobacterial microbiota decreased with age, while LAB did not change. • The structure and composition of the gut bifidobacterial subpopulation of the longevous elderly group were rather different from that of the other three age groups. • Several potentially beneficial bacteria (e.g., Bifidobacterium breve and Bifidobacterium longum) that were enriched in the longevous elderly group.


Assuntos
Bifidobacterium longum , Microbioma Gastrointestinal , Lactobacillales , Idoso , Envelhecimento , Bifidobacterium , Fezes , Humanos
17.
Antonie Van Leeuwenhoek ; 114(8): 1225-1235, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34129122

RESUMO

A novel strictly anaerobic, Gram-negative bacterium, designated as strain FXJYN30E22T, was isolated from the feces of a healthy woman in Yining county, Xinjiang province, China. This strain was non-spore-forming, bile-resistant, non-motile and rod-shaped. It was found to belong to a single separate group in the Phocaeicola genus based on its 16 S ribosomal RNA (rRNA) gene sequence. Alignments of 16 S rRNA gene sequences showed only a low sequence identity (≤ 95.5 %) between strain FXJYN30E22T and all other Phocaeicola strains in public data bases. The genome (43.0% GC) of strain FXJYN30E22T was sequenced, and used for phylogenetic analysis which showed that strain FXJYN30E22T was most closely related to the type strain Phocaeicola massiliensis JCM 13223T. The average nucleotide identity (ANI) value and digital DNA-DNA hybridization (dDDH) between FXJYN30E22T and P. massiliensis JCM 13223T were 90.4 and 41.9 %, which were lower than the generally accepted species boundaries (94.0 and 70 %, respectively). The major cellular fatty acids and polar lipids were anteiso-branched C15:0 and phosphatidylethanolamine, respectively. The result of genome annotation and KEGG analysis showed that strain FXJYN30E22T contains a number of genes in polysaccharide and fatty acid synthesis that indicated adaptation to the human gut system. Furthermore, a pbpE (penicillin-binding protein) gene was found in the genome of strain FXJYN30E22T but in no other Phocaeicola species, which suggested this gene might be contribute to the adaptive capacity of strain FXJYN30E22T. Based on our data, strain FXJYN30E22T (= CGMCC1.17870T/KCTC25195T) was classified as a novel Phocaeicola species, and the name Phocaeicola faecalis sp. nov., was proposed.


Assuntos
Ecossistema , Ácidos Graxos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Feminino , Humanos , Hibridização de Ácido Nucleico , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
18.
J Dairy Sci ; 104(7): 7466-7479, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33896630

RESUMO

Bacillus coagulans has been widely studied for its probiotic properties. Therefore, identifying a strain that can be used as an adjunct starter culture for yogurt production would have commercial value. In this study, 30 B. coagulans strains were isolated from vegetable samples from 11 provinces or autonomous regions in China, and their pan-genomic and phylogenetic characteristics were analyzed. Phylogenetic analysis categorized 30 strains into 4 different subphylotypes, including subtype I (11 isolates), subtype II (7 isolates), subtype III (11 isolates), and subtype IV (1 isolate). Four B. coagulans strains (B. coagulans-70, B. coagulans-78, B. coagulans-79, and B. coagulans-100) were randomly selected from each subphylotype of the phylogenetic tree as adjunct starter cultures. Compared with the other tested strains, B. coagulans-70 showed the highest count in yogurt at the end of the manufacturing period. Comparative genome analysis indicated that the different bacterial levels of B. coagulans strains in yogurt may be associated with the abundance of genes related to carbohydrate transport and metabolism (e.g., sucrose utilization). Finally, differences in texture and volatile flavor compound profiles were observed between the yogurt samples. Compared with the other groups, the addition of B. coagulans-70 exerted a positive effect on the appearance and texture of yogurt products. Volatile analysis showed increased quantities of 2-heptanone, 2-nonanone, amyl alcohol, and 2-hydroxy-3-pentanone in the B. coagulans-70 group compared with control yogurts. These results above combined with the results of a sensory evaluation indicated that B. coagulans-70 is the most suitable strain for further use in functional dairy product development.


Assuntos
Bacillus coagulans , Probióticos , Animais , China , Fermentação , Leite , Filogenia , Iogurte
19.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681701

RESUMO

Cadmium (Cd) is an environmental pollutant that is toxic to almost every human organ. Oral supplementation with lactic acid bacteria (LAB) has been reported to alleviate cadmium toxicity. However, research on the mitigation of cadmium toxicity by LAB is still limited to inorganic cadmium, which is not representative of the varied forms of cadmium ingested daily. In this study, different foodborne forms of cadmium were adopted to establish an in vivo toxicity model, including cadmium-glutathione, cadmium-citrate, and cadmium-metallothionein. The ability of Lactobacillus plantarum CCFM8610 to reduce the toxic effects of these forms of cadmium was further investigated. The 16S rRNA gene sequencing and metabolomics technologies based on liquid chromatography with tandem mass spectrometry (LC-MS/MS) were adopted for the exploration of relevant protective mechanisms. The results demonstrated that the consumption of CCFM8610 can reduce the content of cadmium in mice and relieve the oxidative stress caused by different food-derived forms of cadmium, indicating that CCFM8610 has a promising effect on the remediation of the toxic effects of cadmium food poisoning. Meanwhile, protective effects on gut microflora and serum metabolites might be an important mechanism for probiotics to alleviate cadmium toxicity. This study provides a theoretical basis for the application of L. plantarum CCFM8610 to alleviate human cadmium poisoning.


Assuntos
Cádmio/química , Poluentes Ambientais/toxicidade , Lactobacillus plantarum/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/farmacologia , Animais , Antioxidantes/química , Antioxidantes/metabolismo , Poluentes Ambientais/química , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Lactobacillus plantarum/genética , Fígado/metabolismo , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Camundongos , Camundongos Endogâmicos ICR , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
20.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525627

RESUMO

Hypercholesterolemia is an independent risk factor of cardiovascular disease, which is among the major causes of death worldwide. The aim of this study was to explore whether Bifidobacterium longum strains exerted intra-species differences in cholesterol-lowering effects in hypercholesterolemic rats and to investigate the potential mechanisms. SD rats underwent gavage with each B. longum strain (CCFM 1077, I3, J3 and B3) daily for 28 days. B. longum CCFM 1077 exerted the most potent cholesterol-lowering effect, followed by B. longum I3 and B3, whereas B. longum B3 had no effect in alleviating hypercholesterolemia. Divergent alleviation of different B. longum strains on hypercholesterolemia can be attributed to the differences in bile salt deconjugation ability and cholesterol assimilation ability in vitro. By 16S rRNA metagenomics analysis, the relative abundance of beneficial genus increased in the B. longum CCFM 1077 treatment group. The expression of key genes involved in cholesterol metabolism were also altered after the B. longum CCFM 1077 treatment. In conclusion, B. longum exhibits strain-specific effects in the alleviation of hypercholesterolemia, mainly due to differences in bacterial characteristics, bile salt deconjugation ability, cholesterol assimilation ability, expressions of key genes involved in cholesterol metabolism and alterations of gut microbiota.


Assuntos
Bactérias/classificação , Bifidobacterium longum/fisiologia , Colesterol/efeitos adversos , Hipercolesterolemia/terapia , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bifidobacterium longum/classificação , Colesterol/análise , DNA Bacteriano/genética , DNA Ribossômico/genética , Modelos Animais de Doenças , Fezes/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipercolesterolemia/induzido quimicamente , Hipercolesterolemia/genética , Hipercolesterolemia/microbiologia , Metagenômica , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa