Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558060

RESUMO

High-hardness thermoplastic polyurethane (HD-TPU) presents a high matrix modulus, low-temperature durability, and remarkable abrasion resistance, and has been used in many advanced applications. However, the fabrication of microcellular HD-TPU foam is rarely reported in the literature. In this study, the foaming behavior of HD-TPU with a hardness of 75D was investigated via a pressure-quenching foaming process using CO2 as a blowing agent. Microcellular HD-TPU foam with a maximum expansion ratio of 3.9-fold, a cell size of 25.9 µm, and cell density of 7.8 × 108 cells/cm3 was prepared, where a high optimum foaming temperature of about 170 °C had to be applied with the aim of softening the polymer's matrix modulus. However, the foaming behavior of HD-TPU deteriorated when the foaming temperature further increased to 180 °C, characterized by the presence of coalesced cells, microcracks, and a high foam density of 1.0 g/cm3 even though the crystal domains still existed within the matrix. The cell morphology evolution of HD-TPU foam was investigated by adjusting the saturation time, and an obvious degradation occurred during the high-temperature saturation process. A cell growth mechanism of HD-TPU foams in degradation environments was proposed to explain this phenomenon based on the gas escape through the defective matrix.


Assuntos
Temperatura Alta , Poliuretanos , Dureza , Poliuretanos/química , Temperatura
2.
Macromol Rapid Commun ; 42(22): e2100463, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34490937

RESUMO

Fabrication of multifunctional porous fibers with excellent mechanical properties has attracted abundant attention in the fields of personal thermal management textiles and smart wearable devices. However, the high cost and harsh preparation environment of the traditional solution-solvent phase separation method for making porous fibers aggravates the problems of resource consumption and environmental pollution. Herein, a microextrusion process that combines environmentally friendly CO2 physical foaming with fused deposition modeling technology is proposed, via the dual features of high gas uptake and restricted cell growth, to implement the continuous production of porous polyetheretherketone (PEEK) fibers with a production efficiency of 10.5 cm s-1 . The porous PEEK fiber exhibits excellent stretchability (234.8% strain) and good high-temperature thermal insulation property. The open-cell structure on the surface is favorable for the adsorption to achieve superhydrophobicity (154.4°) and high-efficiency photocatalytic degradation of rhodamine B (90.4%). Moreover, the parameterized controllability of the cell structure is beneficial to widening the multifunctional window. In short, the first porous PEEK physical foaming fiber, which opens up a new avenue for the application expansion, especially in the medical field, is realized.


Assuntos
Dióxido de Carbono , Cetonas , Benzofenonas , Polietilenoglicóis , Polímeros , Porosidade
3.
Langmuir ; 30(44): 13375-83, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25340747

RESUMO

In this study, highly cross-linked and completely imidized polyimide aerogels were prepared from polyimide containing trimethoxysilane side groups, which was obtained as the condensation product of polyimide containing acid chloride side groups and 3-aminopropyltrimethoxysilane. After adding water and acid catalyst, the trimethoxysilane side groups hydrolyzed and condensed one another, and a continuous increase in the complex viscosities of the polyimide solutions with time was observed. The formed polyimide gels were dried by freeze-drying from tert-butyl alcohol to obtain polyimide aerogels, which consisted of a three-dimensional network of polyimide fibers tangled together. By varying the solution concentration of the polyimide containing trimethoxysilane side groups, polyimide aerogels with different densities (ranging from 0.19 to 0.42 g/cm(3)) were obtained. The resulting polyimide aerogels had small pore diameter (ranging from 20.7 to 58.3 nm), high surface area (ranging from 310 to 344 m(2)/g), high 5% weight loss temperature in air (at about 440 °C), and an excellent mechanical property. In addition, the glass transition temperature (349 °C) of the polyimide aerogels was much higher than that (210 °C) of the corresponding linear polyimide. So, even after being heated at 300 °C for 30 min, the porous structure of the polyimide aerogels was not completely destroyed.


Assuntos
Reagentes de Ligações Cruzadas/química , Géis/química , Resinas Sintéticas/química , Silanos/química , Reagentes de Ligações Cruzadas/síntese química , Géis/síntese química , Estrutura Molecular , Tamanho da Partícula , Resinas Sintéticas/síntese química , Propriedades de Superfície
4.
Materials (Basel) ; 17(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38204024

RESUMO

This review introduces an innovative technology termed "Micro-Extrusion Foaming (MEF)", which amalgamates the merits of physical foaming and 3D printing. It presents a groundbreaking approach to producing porous polymer fibers and parts. Conventional methods for creating porous materials often encounter obstacles such as the extensive use of organic solvents, intricate processing, and suboptimal production efficiency. The MEF technique surmounts these challenges by initially saturating a polymer filament with compressed CO2 or N2, followed by cell nucleation and growth during the molten extrusion process. This technology offers manifold advantages, encompassing an adjustable pore size and porosity, environmental friendliness, high processing efficiency, and compatibility with diverse polymer materials. The review meticulously elucidates the principles and fabrication process integral to MEF, encompassing the creation of porous fibers through the elongational behavior of foamed melts and the generation of porous parts through the stacking of foamed melts. Furthermore, the review explores the varied applications of this technology across diverse fields and imparts insights for future directions and challenges. These include augmenting material performance, refining fabrication processes, and broadening the scope of applications. MEF technology holds immense potential in the realm of porous material preparation, heralding noteworthy advancements and innovations in manufacturing and materials science.

5.
Adv Mater ; 35(24): e2301596, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37037047

RESUMO

Facing the global water shortage challenge, solar-driven desalination is considered a sustainable technology to obtain freshwater from seawater. However, the trade-off between the salt cycle and heat localization of existing solar evaporators (SE) hinders its further practical applications. Here, inspired by water hyacinth, a self-standing and self-floating 3D SE with adiabatic foam particles and aligned water channels is built through a continuous directional freeze-casting technique. With the help of the heat insulation effect of foam particles and the efficient water transport of aligned water channels, this new SE can cut off the heat transfer from the top photothermal area to the bulk water without affecting the water supply, breaking the long-standing trade-off between salt cycle and heat localization of traditional SEs. Additionally, its self-standing and self-floating features can reduce human maintenance. Its large exposure height can increase evaporation area and collect environmental energy, breaking the long-standing limitation of solar-to-vapor efficiency of conventional SEs. With the novel structure employed, an evaporation flux of 2.25 kg m-2 h-1 , and apparent solar-to-vapor efficiency of 136.7% are achieved under 1 sun illumination. This work demonstrates a new evaporator structure, and also provides a key insight into the structural design of next-generation salt-tolerant and high-efficiency SEs.

6.
J Hazard Mater ; 437: 129346, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35716573

RESUMO

Although many oil absorption materials have been developed, it still remains a great challenge to achieve rapid absorption and efficient recovery. Over the past decade, research has focused on the development of freeze casting technology using water as a solvent. The materials prepared by this method have poor water resistance and are difficult to apply to oil absorption in aqueous environments. Here, an organic solvent freeze casting strategy is proposed to fabricate ultralight hydrophobic plastic foams with aligned channel structures. Through microscopy in situ observation, we revealed the growth morphology of ice crystals during directional freezing process. Moreover, aligned porous foams with various channel sizes are fabricated by regulating the cooling rate. We found that organic solvent-assisted freeze casting can enhance the hydrophobicity of the matrix material. These aligned porous foams exhibit excellent liquid absorption performance, with high absorption speed and large absorption capacity over a wide viscosity range. This approach has general applicability and can be used to tailor a wide variety of engineering plastic-based aligned porous foams, as long as they can dissolve in organic solvents.


Assuntos
Biomimética , Plásticos , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Solventes/química , Água
7.
Water Res ; 216: 118297, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35325825

RESUMO

To extract lithium from salt lake brine involves a process of separation and concentration. After separating lithium from brine, the lithium ion concentration is generally a few hundred mg/L which is far below the required 20-30 g/L (as Li+) before precipitation as lithium carbonate. The concentration step of a lithium enriched brine is crucial but highly energy-intensive. Spontaneous forward osmosis (FO) technology offers the possibility for concentrating lithium ions with low energy. Because the concentrating process involves both feed and draw solution with very high salinity, it is highly desirable to have a high performance FO membrane with a low structural parameter as well as a high rejection to ions. In this work, thin polyethylene separator supported FO (PE-FO) membranes were prepared and post-treated stepwise with benzyl alcohol (BA) and hydraulic compaction. The effect of the post-treatment on the FO performance was systematically analyzed. Excellent FO performance was achieved: the water flux and reverse salt flux selectivity were 66.3 LMH and 5.25 L/g, respectively, when the active layer is oriented towards the 0.5 M NaCl draw solution with deionized water as the feed. To the best of our knowledge, this FO flux is the highest ever reported in the open literature under similar test conditions. Applied in concentrating lithium enriched brine, the membrane showed superior water flux using saturated MgCl2 as draw solution. A new FO model was established to simulate the water flux during the concentration process with good agreement with the experimental results. The promising results using PE-FO membrane for lithium enrichment opens a new frontier for the potential application of FO membranes.

8.
ACS Omega ; 5(40): 25784-25797, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073103

RESUMO

It is challenging to prepare ultralow-density microcellular foams based on high-performance polymers due to their low gas solubility and rigid polymer matrix. In this study, by applying microcellular foaming technology using CO2/acetone as the blowing agent, ultralow-density poly(ether imide) (PEI) bead foams with an expansion ratio of 30-56 times and cell density of 107-109 cells/cm3 were fabricated, resulting from the enhanced plasticization effect of the mixed fluid. The slow diffusivity of acetone at room temperature ensured the saturated PEI beads to foam after desorption for more than 6 days, which potentially reduces the transportation cost of PEI bead foams significantly. A novel compression molding process was developed to prepare the molded PEI bead foams (MPEIs) using epoxy as a coating agent. The good infiltration character of epoxy on bead foams endowed the MPEIs with excellent mechanical properties, together with an ultralow density of 80-200 kg/m3, long-term dimensional stability at 160 °C, and excellent flame-retardant properties of V0 rating. These features made the MPEIs very promising for many advanced applications.

9.
Int J Mol Sci ; 10(12): 5381-5397, 2009 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-20054476

RESUMO

The crystallization and melting behaviors of linear polylactic acid (PLA) treated by compressed CO(2) was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO(2) exposure significantly increased PLA's crystallization rate; a high crystallinity of 16.5% was achieved after CO(2) treatment for only 1 min at 100 degrees C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA's crystallization equilibrium.


Assuntos
Dióxido de Carbono/química , Congelamento , Ácido Láctico/química , Polímeros/química , Cristalização , Cinética , Poliésteres , Pressão , Temperatura , Volatilização
10.
Polymers (Basel) ; 11(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083341

RESUMO

The way in which a perforated structure is formed has attracted much interest in the porous membrane research community. This novel structure gives materials an excellent antifouling property as well as a low operating pressure and other benefits. Unfortunately, the current membrane fabrication methods usually involve multi-step processes and the use of organic solvents or additives. Our study is the first to offer a way to prepare perforated membrane by using a physical foaming technique with CO2 as the blowing agent. We selected thermoplastic polyurethane (TPU) as the base material because it is a biocompatible elastomer with excellent tensility, high abrasion resistance, and good elastic resilience. Various processing parameters, which included the saturation pressure, the foaming temperature, and the membrane thickness, were applied to adjust the TPU membrane's perforated morphology. We proposed a possible formation mechanism of the perforated membrane. The as-prepared TPU membrane had good mechanical properties with a tensile strength of about 5 MPa and an elongation at break above 100%. Such mechanical properties make this novel membrane usable as a self-standing filter device. In addition, its straight-through channel structure can separate particles and meet different separation requirements.

11.
ACS Appl Mater Interfaces ; 10(44): 38255-38263, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30360062

RESUMO

Natural cotton was selected as a cheap and renewable carbon source to fabricate novel carbon networks with porous three-dimensional conductive frameworks composed of numerous unique hollow carbon fibers by pyrolysis, and outstanding electromagnetic interference (EMI) shielding effectiveness (SE) of ∼26.9-46.9 dB was observed for the samples (∼0.3 mm in thickness) with density of ∼0.14-0.06 g/cm3. Moreover, the combination of cotton-derived carbon networks with graphene through the construction of a sandwich configuration, where graphene sheets were dispersed inhomogeneously on both sides of carbon networks, was further developed and the resultant carbon composite networks with ultrathin skin layers of graphene film in thickness of only ∼2 µm possessed higher EMI SE of ∼48.5-87.0 dB than that (∼33.7-55.6 dB) of pure carbon networks in thickness of ∼0.3-0.7 mm, possibly due to the enhanced EM reflection and absorption of EM waves penetrating the material. The SE increment of ∼26-41% was also observed in the sandwiched samples in comparison with the counterparts with homogeneous graphene dispersion, demonstrating a very promising configuration for the significant SE enhancement.

12.
ACS Appl Mater Interfaces ; 9(15): 13323-13330, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28350156

RESUMO

Macroscopic three-dimensional (3D) graphene foams (GFs) were fabricated efficiently by immediately sintering low-temperature exfoliated graphene powder under inert atmosphere at the temperature over 500 °C. The one-pot sintering process not only integrated two-dimensional (2D) graphene sheets into 3D GF, but also accelerated the structural integrity of graphene by inducing its deoxygenation and repairing the defects. More importantly, the whole process could be finished within hours, usually less than 12 h, and the resultant GFs with interconnected graphene framework as well as meso- and macroporous structure exhibited exceptional attenuating performance for high-frequency electromagnetic interference and adsorption capacities for organic pollutants. In comparison with conventional hydro/solvothermal, sol-gel chemistry, sol-freezing, and templating methods, our sintering strategy possesses more advantages in maneuverability, efficiency, and repeatability, benefiting for the mass production of high-performance and multifunctional GFs.

13.
ACS Appl Mater Interfaces ; 8(12): 8050-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26974443

RESUMO

The fabrication of low-density and compressible polymer/graphene composite (PGC) foams for adjustable electromagnetic interference (EMI) shielding remains a daunting challenge. Herein, ultralightweight and compressible PGC foams have been developed by simple solution dip-coating of graphene on commercial polyurethane (PU) sponges with highly porous network structure. The resultant PU/graphene (PUG) foams had a density as low as ∼0.027-0.030 g/cm(3) and possessed good comprehensive EMI shielding performance together with an absorption-dominant mechanism, possibly due to both conductive dissipation and multiple reflections and scattering of EM waves by the inside 3D conductive graphene network. Moreover, by taking advantage of their remarkable compressibility, the shielding performance of the PUG foams could be simply adjusted through a simple mechanical compression, showing promise for adjustable EMI shielding. We believe that the strategy for fabricating PGC foams through a simple dip-coating method could potentially promote the large-scale production of lightweight foam materials for EMI shielding.

14.
ACS Appl Mater Interfaces ; 5(21): 11383-91, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24134429

RESUMO

Novel high-performance polyetherimide (PEI)/graphene@Fe3O4 (G@Fe3O4) composite foams with flexible character and low density of about 0.28-0.4 g/cm(3) have been developed by using a phase separation method. The obtained PEI/G@Fe3O4 foam with G@Fe3O4 loading of 10 wt % exhibited excellent specific EMI shielding effectiveness (EMI SE) of ~41.5 dB/(g/cm(3)) at 8-12 GHz. Moreover, most the applied microwave was verified to be absorbed rather than being reflected back, resulting from the improved impedance matching, electromagnetic wave attenuation, as well as multiple reflections. Meanwhile, the resulting foams also possessed a superparamagnetic behavior and low thermal conductiviy of 0.042-0.071 W/(m K). This technique is fast, highly reproducible, and scalable, which may facilitate the commercialization of such composite foams and generalize the use of them as EMI shielding materials in the fields of spacecraft and aircraft.


Assuntos
Radiação Eletromagnética , Nanotecnologia , Protetores contra Radiação/química , Compostos Férricos/química , Grafite/química , Humanos , Nanocompostos/química , Nanotubos de Carbono/química , Tamanho da Partícula , Polímeros/química
15.
ACS Appl Mater Interfaces ; 5(7): 2677-84, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23465462

RESUMO

We report a facile approach to produce lightweight microcellular polyetherimide (PEI)/graphene nanocomposite foams with a density of about 0.3 g/cm3 by a phase separation process. It was observed that the strong extensional flow generated during cell growth induced the enrichment and orientation of graphene on cell walls. This action decreased the electrical conductivity percolation from 0.21 vol % for PEI/graphene nanocomposite to 0.18 vol % for PEI/graphene foam. Furthermore, the foaming process significantly increased the specific electromagnetic interference (EMI) shielding effectiveness from 17 to 44 dB/(g/cm3). In addition, PEI/graphene nanocomposite foams possessed low thermal conductivity of 0.065-0.037 W/m·K even at 200 °C and high Young's modulus of 180-290 MPa.

16.
ACS Appl Mater Interfaces ; 3(8): 3103-9, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21744831

RESUMO

The effect of melt blending on the interaction between graphene and polystyrene (PS) matrix has been investigated in this paper. The interaction between graphene and PS was significantly enhanced by melt blending, which led to an increased amount of PS-functional graphene (PSFG) exhibiting good solubility in some solvents. The PS chains on PSFG could effectively prevent the graphene sheets from aggregating and the prepared PS/PSFG composites exhibited a homogeneous dispersion and an improved electrical property. The mechanism of melt blending on this enhanced interaction was attributed to the formation of π-π stacking during the melt blending. Moreover, the formation of chemical bonding during melt blending may have also enhanced the interaction.


Assuntos
Grafite/química , Poliestirenos/química , Elétrons , Transição de Fase , Solventes/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa