Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
Int J Neuropsychopharmacol ; 26(6): 415-425, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37208298

RESUMO

BACKGROUND: Phosphodiesterase 2A (PDE2A) represents a novel target for new therapies addressing psychiatric disorders. To date, the development of PDE2A inhibitors suitable for human clinical evaluation has been hampered by the poor brain accessibility and metabolic stability of the available compounds. METHODS: Corticosterone (CORT)-induced neuronal cell lesion and restraint stress mouse model were used to measure the neuroprotective effect in cells and antidepressant-like behavior in mice. RESULTS: The cell-based assay showed that both Hcyb1 and PF were potent in protecting cells against stress hormone CORT insults by stimulating cAMP and cGMP signaling in hippocampal cells (HT-22). Administration of both compounds before treatment of CORT to cells increased cAMP/cGMP, VASP phosphorylation at Ser239 and Ser157, cAMP response element binding protein phosphorylation at Ser133, and brain derived neurotrophic factor BDNF expression. Further in vivo study showed that both Hcyb1 and PF displayed -antidepressant- and anxiolytic-like effects against restraint stress as indicated by reduced immobility time in the forced swimming and tail suspension tasks as well as increased open arm entries and time spent in open arms and holes visit in elevated plus maze and hole-board tests, respectively. The biochemical study confirmed that these antidepressant- and anxiolytic-like effects of Hcyb1 and PF were related to cAMP and cGMP signaling in the hippocampus. CONCLUSIONS: The results extend the previous studies and validate that PDE2A is a tractable target for drug development in the treatment of emotional disorders such as depression and anxiety.


Assuntos
Ansiolíticos , Inibidores de Fosfodiesterase , Camundongos , Humanos , Animais , Inibidores de Fosfodiesterase/farmacologia , Depressão/psicologia , Ansiolíticos/farmacologia , Antidepressivos/uso terapêutico , Ansiedade/tratamento farmacológico , Ansiedade/induzido quimicamente , Hipocampo , Diester Fosfórico Hidrolases/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Comportamento Animal , Modelos Animais de Doenças
2.
Org Biomol Chem ; 21(17): 3650-3659, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067022

RESUMO

In the presence of alcohol, cocaine metabolism produces a number of metabolites, including three toxic ones (cocaethylene, norcocaine, and norcocaethylene) which are all more toxic than cocaine itself, with the toxicity in the order of cocaine < cocaethylene < norcocaine < norcocaethylene. In this study, we performed kinetic analysis on our previously reported cocaine hydrolase (E30-6) for its catalytic activities accelerating the hydrolysis of the three toxic metabolites in comparison with cocaine. Based on the obtained kinetic data, the in vitro catalytic efficiencies of the enzyme against these substrates are in the order of cocaine > cocaethylene > norcocaine > norcocaethylene. It has been demonstrated that E30-6 can efficiently accelerate the hydrolysis of not only cocaine itself, but also all three toxic metabolites in vitro and in vivo. E30-6 is the most efficient enzyme for each of these toxic substrates (cocaine, cocaethylene, norcocaine, and norcocaethylene) among all the reported enzymes as far as we know at this point. These findings suggest that E30-6 is capable of efficiently treating cocaine toxicity even when alcohol and cocaine are used concurrently.


Assuntos
Cocaína , Cinética , Cocaína/química , Etanol
3.
Mol Divers ; 27(5): 2185-2215, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36331786

RESUMO

Some novel triazole-bearing ketone and oxime derivatives were synthesized from Ibuprofen. In vitro cytotoxic activities of all synthesized molecules against five cancer lines (human breast cancer MCF-7, human lung cancer A549, human prostate cancer PC-3, human cervix cancer HeLa, and human chronic myelogenous leukemia K562 cell lines) were evaluated by MTT assay. In addition, mouse embryonic fibroblast cells (NIH/3T3) were also evaluated to determine the selectivity. Compounds 18, 36, and 45 were found to be the most cytotoxic, and their IC50 values were in the range of 17.46-68.76 µM, against the tested cancer cells. According to the results, compounds 7 and 13 demonstrated good anti-inflammatory activity against the microsomal enzyme prostaglandin E2 synthase-1 (mPGES-1) enzyme at IC50 values of 13.6 and 4.95 µM. The low cytotoxicity and non-mutagenity of these compounds were found interesting. Also, these compounds significantly prevented tube formation in angiogenesis studies. In conclusion, the anti-inflammatory and angiogenesis inhibitory activities of these compounds without toxicity suggested that they may be promising agents in anti-inflammatory treatment and they may be supportive agents for the cancer treatment.


Assuntos
Antineoplásicos , Ibuprofeno , Animais , Camundongos , Feminino , Humanos , Relação Estrutura-Atividade , Ibuprofeno/farmacologia , Triazóis/farmacologia , Fibroblastos , Antineoplásicos/farmacologia , Células HeLa , Anti-Inflamatórios/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga
4.
Proc Natl Acad Sci U S A ; 117(44): 27381-27387, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33051297

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis. There is no therapeutic treatment specific for COVID-19. It is highly desirable to identify potential antiviral agents against SARS-CoV-2 from existing drugs available for other diseases and thus repurpose them for treatment of COVID-19. In general, a drug repurposing effort for treatment of a new disease, such as COVID-19, usually starts from a virtual screening of existing drugs, followed by experimental validation, but the actual hit rate is generally rather low with traditional computational methods. Here we report a virtual screening approach with accelerated free energy perturbation-based absolute binding free energy (FEP-ABFE) predictions and its use in identifying drugs targeting SARS-CoV-2 main protease (Mpro). The accurate FEP-ABFE predictions were based on the use of a restraint energy distribution (RED) function, making the practical FEP-ABFE-based virtual screening of the existing drug library possible. As a result, out of 25 drugs predicted, 15 were confirmed as potent inhibitors of SARS-CoV-2 Mpro The most potent one is dipyridamole (inhibitory constant Ki = 0.04 µM) which has shown promising therapeutic effects in subsequently conducted clinical studies for treatment of patients with COVID-19. Additionally, hydroxychloroquine (Ki = 0.36 µM) and chloroquine (Ki = 0.56 µM) were also found to potently inhibit SARS-CoV-2 Mpro We anticipate that the FEP-ABFE prediction-based virtual screening approach will be useful in many other drug repurposing or discovery efforts.


Assuntos
Antivirais/farmacologia , Betacoronavirus/efeitos dos fármacos , Reposicionamento de Medicamentos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , COVID-19 , Cloroquina/farmacologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases , Dipiridamol/farmacologia , Humanos , Hidroxicloroquina/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2
5.
Int J High Perform Comput Appl ; 37(1): 45-57, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38603271

RESUMO

As a theoretically rigorous and accurate method, FEP-ABFE (Free Energy Perturbation-Absolute Binding Free Energy) calculations showed great potential in drug discovery, but its practical application was difficult due to high computational cost. To rapidly discover antiviral drugs targeting SARS-CoV-2 Mpro and TMPRSS2, we performed FEP-ABFE-based virtual screening for ∼12,000 protein-ligand binding systems on a new generation of Tianhe supercomputer. A task management tool was specifically developed for automating the whole process involving more than 500,000 MD tasks. In further experimental validation, 50 out of 98 tested compounds showed significant inhibitory activity towards Mpro, and one representative inhibitor, dipyridamole, showed remarkable outcomes in subsequent clinical trials. This work not only demonstrates the potential of FEP-ABFE in drug discovery but also provides an excellent starting point for further development of anti-SARS-CoV-2 drugs. Besides, ∼500 TB of data generated in this work will also accelerate the further development of FEP-related methods.

6.
Bioconjug Chem ; 33(7): 1340-1349, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35767675

RESUMO

It is particularly challenging to develop a truly effective pharmacotherapy for cocaine use disorder (CUD) treatment. Accelerating cocaine metabolism via hydrolysis at cocaine benzoyl ester using an efficient cocaine hydrolase (CocH) is known as a promising pharmacotherapeutic approach to CUD treatment. Preclinical and clinical studies on our first CocH (CocH1), in its human serum albumin-fused form known as TV-1380, have demonstrated the promise of a general concept of CocH-based pharmacotherapy for CUD treatment. However, the biological half-life of TV-1380 (t1/2 = 8 h in rats, associated with t1/2 = 43-77 h in humans) is not long enough for practical treatment of cocaine dependence, which requires enzyme injection for no more than once weekly. Through protein fusion of a human butyrylcholinesterase mutant (denoted as CocH5) with a mutant (denoted as Fc(M6)) of Fc from human IgG1, we have designed, prepared, and tested a new fusion protein (denoted as CocH5-Fc(M6)) for its pharmacokinetic profile and in vivo catalytic activity against (-)-cocaine. CocH5-Fc(M6) represents the currently most efficient long-acting cocaine hydrolase with both the highest catalytic activity against (-)-cocaine and the longest elimination half-life (t1/2 = 229 ± 5 h) in rats. As a result, even at a single modest dose of 3 mg/kg, CocH5-Fc(M6) can significantly and effectively accelerate the metabolism of cocaine in rats for at least 60 days. In addition, ∼70 nM CocH5-Fc(M6) in plasma was able to completely block the toxicity and physiological effects induced by intraperitoneal injection of a lethal dose of cocaine (60 mg/kg).


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Animais , Butirilcolinesterase/genética , Butirilcolinesterase/farmacocinética , Hidrolases de Éster Carboxílico/genética , Cocaína/metabolismo , Cocaína/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Humanos , Ratos , Proteínas Recombinantes
7.
Addict Biol ; 27(4): e13179, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754103

RESUMO

Dysregulation of dopamine transporters (DAT) within the dopaminergic system is an important biomarker of cocaine exposure. Depending on cocaine amount in-taken, one-time exposure in rats could lead to most (>95% of total) of DAT translocating to plasma membrane of the dopaminergic neurons compared to normal DAT distribution (~5.7% on the plasma membrane). Without further cocaine exposure, the time course of striatal DAT distribution, in terms of intracellular and plasma membrane fractions of DAT, represents a recovery process of the dopaminergic system. In this study, we demonstrated that after an acute cocaine exposure of 20 mg/kg (i.p.), the initial recovery process from days 1 to 15 in rats was relatively faster (from >95% on day 1 to ~35.4% on day 15). However, complete recovery of the striatal DAT distribution may take about 60 days. In another situation, with repeated cocaine exposures for once every other day for a total of 17 doses of 20 mg/kg cocaine (i.p.) from days 0 to 32, the complete recovery of striatal DAT distribution may take an even longer time (about 90 days), which represents a consequence of chronic cocaine use. Further, we demonstrated that a highly efficient Fc-fused cocaine hydrolase, CocH5-Fc(M6), effectively blocked cocaine-induced hyperactivity and DAT trafficking with repeated cocaine exposures by maintaining a plasma CocH5-Fc(M6) concentration ≥58.7 ± 2.9 nM in rats. The cocaine hydrolase protected dopaminergic system and helped the cocaine-altered DAT distribution to recover by preventing the dopaminergic system from further damage by cocaine.


Assuntos
Cocaína , Animais , Hidrolases de Éster Carboxílico , Cocaína/farmacologia , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Ratos , Proteínas Recombinantes
8.
Addict Biol ; 27(1): e13089, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363291

RESUMO

Cocaine blocks dopamine uptake via dopamine transporter (DAT) on plasma membrane of neuron cells and, as a result, produces the high and induces DAT trafficking to plasma membrane which contributes to the drug seeking or craving. In this study, we first examined the dose dependence of cocaine-induced DAT trafficking and hyperactivity in rats, demonstrating that cocaine at an intraperitoneal dose of 10 mg/kg or higher led to redistribution of most DAT to the plasma membrane while inducing significant hyperactivity in rats. However, administration of 5-mg/kg cocaine (ip) did not significantly induce DAT trafficking or hyperactivity in rats. So the threshold (intraperitoneal) dose of cocaine that can significantly induce DAT trafficking or hyperactivity should be between 5 and 10 mg/kg. These data suggest that when a cocaine dose is high enough to induce significant hyperactivity, it can also significantly induce DAT trafficking to the plasma membrane. Further, the threshold brain cocaine concentration required to induce significant hyperactivity and DAT trafficking was estimated to be ~2.0 ± 0.8 µg/g. Particularly, for treatment of cocaine abuse, previous studies demonstrated that an exogenous cocaine-metabolizing enzyme, for example, CocH3-Fc(M3), can effectively block cocaine-induced hyperactivity. However, it was unknown whether an enzyme could also effectively block cocaine-induced DAT trafficking to the plasma membrane. This study demonstrates, for the first time, that the enzyme is also capable of effectively blocking cocaine from reaching the brain even with a lethal dose of 60-mg/kg cocaine (ip) and, thus, powerfully preventing cocaine-induced physiological effects such as the hyperactivity and DAT trafficking.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Membrana Celular/efeitos dos fármacos , Cocaína/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Hipercinese/patologia , Proteínas Recombinantes/metabolismo , Animais , Transtornos Relacionados ao Uso de Cocaína , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley
9.
Addict Biol ; 27(6): e13236, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301205

RESUMO

As well known, cocaine induces stimulant effects and dopamine transporter (DAT) trafficking to the plasma membrane of dopaminergic neurons. In the present study, we examined cocaine-induced hyperactivity along with cocaine-induced DAT trafficking and the recovery rate of the dopaminergic system in female rats in comparison with male rats, demonstrating interesting gender differences. Female rats are initially more sensitive to cocaine than male rats in terms of both the DAT trafficking and hyperactivity induced by cocaine. Particularly, intraperitoneal (i.p.) administration of 5 mg/kg cocaine induced significant hyperactivity and DAT trafficking in female rats but not in male rats. After repeated cocaine exposures (i.e., i.p. administration of 20 mg/kg cocaine every other day from Day 0 to Day 32), cocaine-induced hyperactivity in female rats gradually became a clear pattern of two phases, with the first phase of the hyperactivity lasting for only a few minutes and the second phase lasting for over an hour beginning at ~30 min, which is clearly different from that of male rats. It has also been demonstrated that the striatal DAT distribution of female rats may recover faster than that of male rats after multiple cocaine exposures. Nevertheless, despite the remarkable gender differences, our recently developed long-acting cocaine hydrolase, known as CocH5-Fc(M6), can similarly and effectively block cocaine-induced DAT trafficking and hyperactivity in both male and female rats.


Assuntos
Cocaína , Proteínas da Membrana Plasmática de Transporte de Dopamina , Masculino , Feminino , Ratos , Animais , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Cocaína/farmacologia , Cocaína/metabolismo , Fatores Sexuais , Inibidores da Captação de Dopamina/farmacologia , Inibidores da Captação de Dopamina/metabolismo , Membrana Celular/metabolismo
10.
Proteins ; 89(1): 132-137, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32852843

RESUMO

Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.


Assuntos
Produtos Biológicos , Streptomyces , Produtos Biológicos/metabolismo , Vias Biossintéticas , Flavina-Adenina Dinucleotídeo/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Streptomyces/genética
11.
J Am Chem Soc ; 143(38): 15674-15687, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542283

RESUMO

Increasing demands for efficient and versatile chemical reactions have prompted innovations in enzyme engineering. A major challenge in engineering α-ketoglutarate-dependent oxygenases is to develop a rational strategy which can be widely used for directly evolving the desired mutant to generate new products. Herein, we report a strategy for rational redesign of a model enzyme, 4-hydroxyphenylpyruvate dioxygenase (HPPD), based on quantum mechanics/molecular mechanics (QM/MM) calculation and molecular dynamic simulations. This strategy enriched our understanding of the HPPD catalytic reaction pathway and led to the discovery of a series of HPPD mutants producing hydroxyphenylacetate (HPA) as the alternative product other than the native product homogentisate. The predicted HPPD-Fe(IV)═O-HPA intermediate was further confirmed by the crystal structure of Arabidopsis thaliana HPPD/S267W complexed with HPA. These findings not only provide a good understanding of the structure-function relationship of HPPD but also demonstrate a generally applicable platform for the development of biocatalysts.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/química , Proteínas Mutantes/química , Arabidopsis/química , Catálise , Cristalografia por Raios X , Cinética , Fenômenos Mecânicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Relação Estrutura-Atividade , Termodinâmica
12.
Chembiochem ; 21(7): 952-957, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31621997

RESUMO

Herein we describe the ability of the permissive glycosyltransferase (GT) OleD Loki to convert a diverse set of >15 histone deacetylase (HDAC) inhibitors (HDACis) into their corresponding hydroxamate glycosyl esters. Representative glycosyl esters were subsequently evaluated in assays for cancer cell line cytotoxicity, chemical and enzymatic stability, and axolotl embryo tail regeneration. Computational substrate docking models were predictive of enzyme-catalyzed turnover and suggest certain HDACis may form unproductive, potentially inhibitory, complexes with GTs.


Assuntos
Proteínas de Bactérias/metabolismo , Glucosiltransferases/metabolismo , Ácidos Hidroxâmicos/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Sítios de Ligação , Biocatálise , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Glicosilação , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Simulação de Acoplamento Molecular , Especificidade por Substrato
13.
Bioorg Med Chem Lett ; 30(22): 127501, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882418

RESUMO

A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure-activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 µM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.


Assuntos
Compostos Aza/farmacologia , Indóis/farmacologia , Quinuclidinas/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Compostos Aza/síntese química , Compostos Aza/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Estrutura Molecular , Quinuclidinas/síntese química , Quinuclidinas/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
14.
Org Biomol Chem ; 18(10): 1968-1977, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32101217

RESUMO

A majority of cocaine users also consume alcohol. The concurrent use of cocaine and alcohol produces the pharmacologically active metabolites cocaethylene and norcocaethylene, in addition to norcocaine. Both cocaethylene and norcocaethylene are more toxic than cocaine itself. Hence, a truly valuable cocaine-metabolizing enzyme for cocaine abuse/overdose treatment should be effective for the hydrolysis of not only cocaine, but also its metabolites norcocaine, cocaethylene, and norcocaethylene. However, there has been no report on enzymes capable of hydrolyzing norcocaethylene (the most toxic metabolite of cocaine). The catalytic efficiency parameters (kcat and KM) of human butyrylcholinesterase (BChE) and two mutants (known as cocaine hydrolases E14-3 and E12-7) against norcocaethylene have been characterized in the present study for the first time, and they are compared with those against cocaine. According to the obtained kinetic data, wild-type human BChE showed a similar catalytic efficiency against norcocaethylene (kcat = 9.5 min-1, KM = 11.7 µM, and kcat/KM = 8.12 × 105 M-1 min-1) to that against (-)-cocaine (kcat = 4.1 min-1, KM = 4.5 µM, and kcat/KM = 9.1 × 105 M-1 min-1). E14-3 and E12-7 showed an improved catalytic activity against norcocaethylene compared to wild-type BChE. E12-7 showed a 39-fold improved catalytic efficiency against norcocaethylene (kcat = 210 min-1, KM = 6.6 µM, and kcat/KM = 3.18 × 107 M-1 min-1). It has been demonstrated that E12-7 as an exogenous enzyme can efficiently metabolize norcocaethylene in rats.


Assuntos
Butirilcolinesterase/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Cocaína/análogos & derivados , Proteínas Recombinantes/metabolismo , Animais , Biocatálise , Butirilcolinesterase/química , Butirilcolinesterase/genética , Células CHO , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Cocaína/química , Cocaína/metabolismo , Cocaína/farmacocinética , Cricetulus , Ensaios Enzimáticos , Humanos , Hidrólise , Cinética , Masculino , Simulação de Acoplamento Molecular , Mutação , Ratos Sprague-Dawley , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
J Phys Chem A ; 124(29): 6084-6095, 2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32574051

RESUMO

A supermolecule-continuum approach with water clusters up to n = 16 H2O molecules has been used to predict the absolute hydration free energies at 298 K (ΔGhyd) of both hydrogen (H•) and hydride (H-) to be 4.6 ± 1 and -78 ± 3 kcal/mol, respectively. These values are combined with a high accuracy prediction of the gas-phase electron affinity (ΔGgas,298K = -16.9 kcal/mol) to determine the aqueous electron affinity of H• of 99.5 ± 3 kcal/mol, which yields a reduction potential for H• vs SHE of -0.03 ± 0.15 V. This value is in agreement within 0.2 V with most estimates obtained using a wide variety of approaches. These results can be used to improve the absolute hydricity scale in water which provides additional insights into how a putative hydride interacts with solvent but do not change the ability to predict the relative reactivity of two species using relative hydricity scales.

16.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927660

RESUMO

Collagen prolyl 4-hydroxylase 1 (C-P4H1) is an α-ketoglutarate (α-KG)-dependent dioxygenase that catalyzes 4-hydroxylation of proline on collagen. C-P4H1-induced prolyl hydroxylation is required for proper collagen deposition and cancer metastasis. Therefore, targeting C-P4H1 is considered a potential therapeutic strategy for collagen-related cancer progression and metastasis. However, no C-P4H1 inhibitors are available for clinical testing, and the high content assay is currently not available for C-P4H1 inhibitor screening. In the present study, we developed a high-throughput screening assay by quantifying succinate, a byproduct of C-P4H-catalyzed hydroxylation. C-P4H1 is the major isoform of collagen prolyl 4-hydroxylases (CP4Hs) that contributes the majority prolyl 4-hydroxylase activity. Using C-P4H1 tetramer purified from the eukaryotic expression system, we showed that the Succinate-GloTM Hydroxylase assay was more sensitive for measuring C-P4H1 activity compared with the hydroxyproline colorimetric assay. Next, we performed high-throughput screening with the FDA-approved drug library and identified several new C-P4H1 inhibitors, including Silodosin and Ticlopidine. Silodosin and Ticlopidine inhibited C-P4H1 activity in a dose-dependent manner and suppressed collagen secretion and tumor invasion in 3D tissue culture. These C-P4H1 inhibitors provide new agents to test clinical potential of targeting C-P4H1 in suppressing cancer progression and metastasis.


Assuntos
Antineoplásicos/análise , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Prolil-Hidrolase/análise , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Indóis/química , Ticlopidina/química
17.
Bioconjug Chem ; 30(12): 3021-3027, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31661952

RESUMO

It is very popular to fuse a protein drug or drug candidate to the Fc domain of immunoglobulin G (IgG) in order to prolong the in vivo half-life. In this study, we have designed, prepared, and tested an Fc-fused thermostable cocaine esterase (CocE) mutant (known as E196-301, with the T172R/G173Q/L196C/I301C substitutions on CocE) expressed in E. coli. As expected, Fc-fusion does not affect the in vitro enzyme activity and thermal stability of the enzyme and that Fc-E196-301 can favorably bind FcRn with Kd = 386 ± 35 nM. However, Fc-fusion does not prolong the in vivo half-life of E196-301 at all; Fc-E196-301 and E196-301 have essentially the same PK profile (t1/2 = 0.4 ± 0.1 h) in rats. This is the first time demonstrating that Fc-fusion does not prolong in vivo half-life of a protein. This finding is consistent with the mechanistic understanding that E196-301 and Fc-E196-301 are all degraded primarily through rapid proteolysis in the body. The Fc fusion cannot protect E196-301 from the proteolysis in the body. Nevertheless, it has been demonstrated that PEGylation can effectively protect E196-301, as the PEGylated E196-301, i.e., PEG-E196-301, has a significantly prolonged in vivo half-life. It has also been demonstrated that both E196-301 and PEG-E196-301 have dose-dependent in vivo half-lives (e.g., 19.9 ± 6.4 h for the elimination t1/2 of 30 mg/kg PEG-E196-301), as the endogenous proteolytic enzymes responsible for proteolysis of E196-301 (PEGylated or not) are nearly saturated by the high plasma concentration produced by a high dose of E196-301 or PEG-E196-301.


Assuntos
Hidrolases de Éster Carboxílico/química , Estabilidade Enzimática/efeitos dos fármacos , Polietilenoglicóis/química , Animais , Proteínas de Bactérias , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/farmacocinética , Desenho de Fármacos , Escherichia coli/genética , Meia-Vida , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/imunologia , Proteínas Mutantes/química , Proteínas Mutantes/farmacocinética , Polietilenoglicóis/farmacologia , Proteólise/efeitos dos fármacos , Ratos
18.
Bioorg Med Chem Lett ; 29(24): 126754, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31708262

RESUMO

Cholinesterase inhibitors have long been used in the treatment of Alzheimer's Disease (AD) via the protection of acetylcholine levels. However, recent research has shown that the specific inhibition of butyrylcholinesterase (BChE) could better ameliorate symptoms within patients. In addition, it has recently been shown that selective inhibition of BChE can also significantly attenuate the toxicity and physiological effects of heroin. Currently, there are no specific and potent inhibitors of BChE approved for use in AD or heroin abuse. Through a combined use of in silico and in vitro screening, we have found three compounds with sub-50 nM IC50 values that specifically target BChE. These newly discovered BChE inhibitors can act as the lead scaffolds for future development of the desirably potent and selective BChE inhibitors.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Inibidores da Colinesterase/farmacologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
19.
J Chem Inf Model ; 59(9): 3839-3845, 2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31429562

RESUMO

Microsomal prostaglandin E2 synthase-1 (mPGES-1) is known as an ideal target for next-generation anti-inflammatory drugs to effectively and safely treat a variety of inflammation-related diseases. High-resolution X-ray crystal structures are available for human mPGES-1, but all in a closed conformation for a glutathione (GSH)-binding site. Here, we report an in silico observation of the desirable open conformation of mPGES-1 using a simple computational strategy with fully relaxed molecular dynamics simulations starting a high-resolution X-ray crystal structure in the closed conformation. The open conformation mainly exists in the apo-form. Once GSH enters the binding site, the binding site is closed and, thus, mPGES-1 becomes the closed conformation. According to the determined free energy profile, both the open and closed conformations can co-exist in solution with a thermodynamic equilibrium, and the conformational distribution is dependent on the GSH concentration. In addition, the cap domain responsible for the conformational transition is located right on the crystal packing interface, showing that only closed conformation is suitable for the crystal packing. All of the computational insights are consistent with reported experimental observations. The computationally simulated open conformation of mPGES-1 may serve as a new target state for the rational design of novel inhibitors of mPGES-1. We anticipate that a computational strategy similar to the one used in this study may also be used to explore open conformation starting from a crystal structure of the corresponding closed conformation with a ligand bound for other proteins.


Assuntos
Simulação por Computador , Glutationa/metabolismo , Simulação de Dinâmica Molecular , Prostaglandina-E Sintases/química , Prostaglandina-E Sintases/metabolismo , Sítios de Ligação , Humanos , Domínios Proteicos , Termodinâmica
20.
Proc Natl Acad Sci U S A ; 113(2): 422-7, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26712009

RESUMO

Cocaine abuse is a world-wide public health and social problem without a US Food and Drug Administration-approved medication. An ideal anticocaine medication would accelerate cocaine metabolism, producing biologically inactive metabolites by administration of an efficient cocaine-specific exogenous enzyme. Our recent studies have led to the discovery of the desirable, highly efficient cocaine hydrolases (CocHs) that can efficiently detoxify and inactivate cocaine without affecting normal functions of the CNS. Preclinical and clinical data have demonstrated that these CocHs are safe for use in humans and are effective for accelerating cocaine metabolism. However, the actual therapeutic use of a CocH in cocaine addiction treatment is limited by its short biological half-life (e.g., 8 h or shorter in rats). Here we demonstrate a novel CocH form, a catalytic antibody analog, which is a fragment crystallizable (Fc)-fused CocH dimer (CocH-Fc) constructed by using CocH to replace the Fab region of human IgG1. The CocH-Fc not only has a high catalytic efficiency against cocaine but also, like an antibody, has a considerably longer biological half-life (e.g., ∼107 h in rats). A single dose of CocH-Fc was able to accelerate cocaine metabolism in rats even after 20 d and thus block cocaine-induced hyperactivity and toxicity for a long period. Given the general observation that the biological half-life of a protein drug is significantly longer in humans than in rodents, the CocH-Fc reported in this study could allow dosing once every 2-4 wk, or longer, for treatment of cocaine addiction in humans.


Assuntos
Hidrolases de Éster Carboxílico/administração & dosagem , Hidrolases de Éster Carboxílico/uso terapêutico , Transtornos Relacionados ao Uso de Cocaína/tratamento farmacológico , Animais , Biocatálise , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/toxicidade , Cocaína/metabolismo , Humanos , Hidrólise , Camundongos , Modelos Moleculares , Ratos Sprague-Dawley , Receptores Fc/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa