Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Virol J ; 20(1): 151, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452371

RESUMO

Pseudorabies virus (PRV) can infect multiple hosts and lead to fatal encephalitis. There is a significant increase in the number of microglia in the brain of animals infected with PRV. However, whether and how microglia contribute to central nervous system damage in PRV infection remain unknown. In the present study, we elucidated that PRV infection can cause more severe inflammatory cell infiltration, thicker and more numerous vessel sleeve walls, and more severe inflammatory responses in the brains of natural hosts (pigs) than in those of nonnatural hosts (mice). In a mice infection model, activated microglia restricted viral replication in the early stage of infection. Acute neuroinflammation caused by microglia hyperactivation at late-stage of infection. Furthermore, in vitro experiments revealed that microglia restricted viral replication and decreased viral infectivity. This may be associated with the phagocytic ability of microglia because we observed a significant increase in the expression of the membrane receptor TREM2 in microglia, which is closely related to phagocytosis, we observed that depletion of microglia exacerbated neurological symptoms, blood-brain barrier breakdown, and peripheral lymphocyte infiltration. Taken together, we revealed the dual role of microglia in protecting the host and neurons from PRV infection.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Camundongos , Animais , Suínos , Microglia , Encéfalo , Imunidade
2.
Microorganisms ; 12(3)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543477

RESUMO

Respiratory illnesses present a significant threat to porcine health, with co-infections involving Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), Streptococcus suis (SS), Porcine Circovirus Type 2 (PCV2), and Porcine Circovirus Type 3 (PCV3) acting as the primary causative agents. As a result, the precise diagnosis of PRRSV, PCV2, PCV3 and SS is of paramount importance in the prevention and control of respiratory diseases in swine. Therefore, we conducted a molecular bioinformatical analysis to concurrently detect and differentiate PRRSV, PCV2, PCV3 and SS. We selected the ORF6 gene of PRRSV, the ORF2 gene of PCV2 and PCV3, and the glutamate dehydrogenase (GDH) gene of SS as targets. Specific primers and probes were designed for each pathogen, and following meticulous optimization of reaction conditions, we established a multiple TaqMan fluorescence quantitative PCR detection method. Subsequently, we subjected this method to a comprehensive assessment, evaluating its specificity, sensitivity, and repeatability. The research results demonstrated that the established multiple TaqMan fluorescence quantitative PCR detection method displays displayed exemplary specificity, with no instances of cross-reactivity with other pathogens. The method's minimum detection concentrations for PRRSV, PCV2, PCV3, and SS were 2.80 × 101 copies/µL, 1.96 × 102 copies/µL, 2.30 × 102 copies/µL, and 1.75 × 103 copies/µL, respectively. When applied to the analysis of 30 clinical samples, the results closely mirrored those obtained through Chinese standard uniplex real-time qPCR detection method for PRRSV, as well as the general PCR methods for SS, PCV2, and PCV3. This study underscores the robust specificity, high sensitivity, and consistent stability of the multiple TaqMan fluorescence quantitative PCR detection method that we have developed. It is ideally suited to the clinical monitoring of PRRSV, PCV2, PCV3, and SS, and it carries significant importance in ongoing efforts to prevent and manage respiratory diseases in porcine populations.

3.
Heliyon ; 10(1): e23295, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163213

RESUMO

Ulcerative colitis (UC) is one of the primary inflammatory bowel diseases (IBDs) and causes a serious threat to human public health around the world. Currently, there are no proven safe and effective treatment options to treat UC. Fraxetin (Fxt) is a widely recognized antioxidant and anti-inflammatory legume derived from ash bark. In the present study, we investigated the protective effect and mechanism of Fxt on UC. Our results showed that Fxt significantly attenuated the body weight, colon length reduction, tissue damage, and disease activity index induced by dextran sodium sulphate (DSS). Moreover, the DSS-induced activation of the NF-κB pathway and NLRP3 inflammasomes was inhibited, and the inflammatory response was reduced. Fxt restored gut barrier function by increasing the number of goblet cells and the levels of tight junction proteins (ZO-1 and occludin). In addition, Fxt can alter the intestinal microbiota by enhancing the diversity of the microbiota, increasing the relative abundance of beneficial bacteria and inhibiting the growth of harmful bacteria. These results revealed that Fxt alleviates DSS-induced colitis by modulating the inflammatory response, enhancing epithelial barrier integrity and regulating the gut microbiota. This study may provide a scientific basis for the potential therapeutic effect of Fxt in the prevention of colitis and other related diseases.

4.
Vet Res Commun ; 47(4): 1949-1962, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37266866

RESUMO

The thymus, the central immune organ in mammals, plays an important role in immune defense. Porcine reproductive and respiratory syndrome virus (PRRSV) infection in piglets can cause thymus injury and immunosuppression. However, the mechanisms of thymus injury remain unknown. This study was aimed at investigating the specific manifestations of thymus injury through the construction of a PRRSV-infected piglet model and histopathological observation. In this study, fourteen 40-day-old PRRSV-free piglets were randomly divided into two groups, eleven of which were intramuscularly injected with 3 mL of PRRSV WUH3 virus suspension (106 PFU /mL) in the infection group, and three of which were sham-inoculated with 3 mL of RPMI-1640 medium in the control group. Clinical necropsy and samples collection were performed on day 8 after artificial infection. With the Illumina platform, the transcriptomes of piglet thymus tissues from infected and control piglets were sequenced to explore the relationships of differentially expressed genes (DEGs) and signaling pathways with thymus injury. The immune organs of PRRSV-infected piglets were severely damaged. The histopathological findings in the thymus indicated that PRRSV infection was associated with a large decrease in lymphocytes, cell necrosis and cell apoptosis; an increase in blood vessels and macrophages; thymic corpuscle hyperplasia; and interstitial widening of the thymic lobules. The transcriptomic analysis results revealed that the Gene Ontology functions of DEGs were enriched primarily in biological processes such as angiogenesis, regulation of angiogenesis and positive regulation of cell migration. Moreover, greater numbers of blood vessels and macrophages were observed in the thymus in PRRSV-infected than control piglets. KEGG pathway enrichment analysis revealed that the DEGs were significantly enriched in the Toll-like receptor signaling pathway, chemokine signaling pathway, IL-17 signaling pathway and TNF signaling pathway. The expression of TLR8, IRF5, the chemokines CCL2, CCL3L1 and CCL5; and their receptors CCR1, CCR2 and CCR5 was significantly up-regulated in PRRSV infection, thus suggesting that these cytokines were associated with the pathological processes of thymus injury.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Doenças dos Suínos , Animais , Suínos , Síndrome Respiratória e Reprodutiva Suína/genética , Transcriptoma , Timo/patologia , Apoptose , Mamíferos , Doenças dos Suínos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa