Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(14): e202218669, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36762956

RESUMO

Proton transfer is crucial for electrocatalysis. Accumulating cations at electrochemical interfaces can alter the proton transfer rate and then tune electrocatalytic performance. However, the mechanism for regulating proton transfer remains ambiguous. Here, we quantify the cation effect on proton diffusion in solution by hydrogen evolution on microelectrodes, revealing the rate can be suppressed by more than 10 times. Different from the prevalent opinions that proton transport is slowed down by modified electric field, we found water structure imposes a more evident effect on kinetics. FTIR test and path integral molecular dynamics simulation indicate that proton prefers to wander within the hydration shell of cations rather than to hop rapidly along water wires. Low connectivity of water networks disrupted by cations corrupts the fast-moving path in bulk water. This study highlights the promising way for regulating proton kinetics via a modified water structure.

2.
Langmuir ; 37(38): 11251-11259, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528801

RESUMO

Solid/liquid interfacial structure occupies great importance in chemistry, biology, and materials. In this paper, by combining EC-SERS study and DFT calculation, we reveal the adsorption and dimerization of sulfite (SO32-) at a gold electrode/water solution interface, and establish an adsorption displacement strategy to suppress the dimerization of sulfite. At the gold electrode/sodium sulfite solution interface, at least two layers of SO32- anions are adsorbed on the electrode surface. As the applied potential shifts negatively, the adsorption strength of the first SO32- layer is weakened gradually and then is dimerized with the second orientated SO32- layer to form S2O52-, and S2O52- is further reduced to S2O32-. After hydroxyethylene disphosphonic acid (HEDP) is introduced to the gold electrode/sodium sulfite solution interface, the second oriented SO32- layer is replaced by a HEDP coadsorption layer. This results in the first layer of SO32- being desorbed directly without any structural transformation or chemical reaction as the potential shifts negatively. The suppression of sulfite dimerization by HEDP is more clear at the gold electrode/gold sulfite solution interface owing to the electroreduction of gold ions. Furthermore, the electrochemical studies and electrodeposition experiments show that as the sulfite dimerization reaction is suppressed, the electroreduction of gold ions is accelerated, and the deposited gold coating is bright and dense with finer grains.

3.
J Am Chem Soc ; 139(9): 3320-3323, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28211690

RESUMO

The spontaneous α-to-δ phase transition of the formamidinium-based (FA) lead halide perovskite hinders its large scale application in solar cells. Though this phase transition can be inhibited by alloying with methylammonium-based (MA) perovskite, the underlying mechanism is largely unexplored. In this Communication, we grow high-quality mixed cations and halides perovskite single crystals (FAPbI3)1-x(MAPbBr3)x to understand the principles for maintaining pure perovskite phase, which is essential to device optimization. We demonstrate that the best composition for a perfect α-phase perovskite without segregation is x = 0.1-0.15, and such a mixed perovskite exhibits carrier lifetime as long as 11.0 µs, which is over 20 times of that of FAPbI3 single crystal. Powder XRD, single crystal XRD and FT-IR results reveal that the incorporation of MA+ is critical for tuning the effective Goldschmidt tolerance factor toward the ideal value of 1 and lowering the Gibbs free energy via unit cell contraction and cation disorder. Moreover, we find that Br incorporation can effectively control the perovskite crystallization kinetics and reduce defect density to acquire high-quality single crystals with significant inhibition of δ-phase. These findings benefit the understanding of α-phase stabilization behavior, and have led to fabrication of perovskite solar cells with highest efficiency of 19.9% via solvent management.

4.
J Colloid Interface Sci ; 648: 270-277, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301151

RESUMO

Advanced Ag nanoparticles (Ag NPs) were prepared by wet chemical oxidation-reduction method, using mainly the tannic acid as reducing agent and carboxymethylcellulose sodium as stabilizer. The prepared Ag NPs uniformly disperse and are stable for more than one month without agglomeration. The studies of transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) absorption spectroscopy indicate that the Ag NPs are in homogeneous sphere with only 4.4 nm average size and narrow particle size distribution. Electrochemical measurements reveal that the Ag NPs behave excellent catalytic activity for electroless copper plating using glyoxylic acid as reducing agent. In situ fourier transform infrared (in situ FTIR) spectroscopic analysis combined with density functional theory (DFT) calculation illustrate that the molecular oxidation of glyoxylic acid catalyzed by Ag NPs is as the following routes: glyoxylic acid molecule first is adsorbed on Ag atoms with carboxyl oxygen terminal, then hydrolyzed to diol anionic intermediate, and last oxidized to oxalic acid. Time-resolved in situ FTIR spectroscopy further reveals the real-time reactions of electroless copper plating as follows: glyoxylic acid is continuously oxidized to oxalic acid and releases electrons at the active catalyzing spots of Ag NPs, and Cu(II) coordination ions are in situ reduced by the electrons. Based on the excellent catalytic activity, the advanced Ag NPs can replace the expensive Pd colloids catalyst and successfully apply in through-holes metallization of printed circuit board (PCB) by electroless copper plating.

5.
Adv Sci (Weinh) ; 2(5): 1500013, 2015 05.
Artigo em Inglês | MEDLINE | ID: mdl-27980935

RESUMO

An impedimetric sensor for persistent toxic substances, including organic pollutants and toxic inorganic ions is presented. The persistent toxic substances are detected using an ultrasensitive technique that is based on electron-transfer blockage. This depends on the formation of guest-host complexes, hydrogen bonding, or a cyclodextrin (CD)-metal complex (Mm(OH)n-ß-CD) structure between the target pollutants and ß-CD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa