Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Hazard Mater ; 478: 135505, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39146587

RESUMO

Struvite recovery shows significant potential for simultaneously recovering nitrogen (N) and phosphorus (P) from swine wastewater but is challenged by the occurrence and transformation of antibiotic residuals. Electrochemically mediated struvite precipitation with sacrificial magnesium anode (EMSP-Mg) is promising due to its automation and chemical-free merits. However, the fate of antibiotics remains underexplored. We investigated the behavior of sulfadiazine (SD), an antibiotic frequently detected but less studied than others within the EMSP-Mg system. Significantly less SD (≤ 5%) was co-precipitated with recovered struvite in EMSP-Mg than conventional chemical struvite precipitation (CSP) processes (15.0 to 50.0%). The reduced SD accumulation in struvite recovered via EMSP was associated with increased pH and electric potential differences, which likely enhanced the electrostatic repulsion between SD and struvite. In contrast, the typical strategies used in enhancing P removal in the EMSP-Mg system, including increasing the Mg/P ratio or the Mg-release rates, have shown negligible effects on SD adsorption. Furthermore, typical coexisting ions (Ca2+, Cl-, and HCO3-) inhibited SD adsorption onto recovered products. These results provide new insights into the interactions between antibiotics and struvite within the EMSP-Mg system, enhancing our understanding of antibiotic migration pathways and aiding the development of novel EMSP processes for cleaner struvite recovery.


Assuntos
Eletrodos , Magnésio , Estruvita , Águas Residuárias , Poluentes Químicos da Água , Estruvita/química , Animais , Águas Residuárias/química , Magnésio/química , Suínos , Poluentes Químicos da Água/química , Fósforo/química , Sulfadiazina/química , Antibacterianos/química , Compostos de Magnésio/química , Precipitação Química , Eliminação de Resíduos Líquidos/métodos
2.
J Hazard Mater ; 465: 133418, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183941

RESUMO

Electrochemically mediated struvite precipitation (EMSP) offers a robust, chemical-free process towards phosphate and ammonium reclamation from nutrients-rich wastewater, i.e., swine wastewater. However, given the coexistence of heavy metal, struvite recovered from wastewater may suffer from heavy metal contamination. Here, we systematically investigated the fate of Cu2+, as a representative heavy metal, in the EMSP process and compared it with the chemical struvite precipitation (CSP) system. The results showed that Cu2+ was 100% transferred from solution to solid phase as a mixture of copper and struvite under pHi 9.5 with 2-20 mg/L Cu2+ in the CSP system, and varying pH would affect struvite production. In the EMSP system, the formation of struvite was not affected by bulk pH, and struvite was much less polluted by co-removed Cu2+ (24.4%) at pHi 7.5, which means we recovered a cleaner and safer product. Specifically, struvite mainly accumulates on the front side of the cathode. In contrast, the fascinating thing is that Cu2+ is ultimately deposited primarily to the back side of the cathode in the form of copper (hydro)oxides due to the distinct thickness of the local high pH layer on the two sides of the cathode. In turn, struvite and Cu (hydro)oxides can be harvested separately from the front and back sides of the cathode, respectively, facilitating the subsequent recycling of heavy metals and struvite. The contrasting fate of Cu2+ in the two systems highlights the merits of EMSP over conventional CSP in mitigating heavy metal pollution on recovered products, promoting the development of EMSP technology towards a cleaner recovery of struvite from waste streams.

3.
Water Res ; 231: 119604, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36669305

RESUMO

Phosphorus (P) is often regarded as the primary stimulant for eutrophication, while its importance as a crucial life element is also well acknowledged. Given its future scarcity, P recycling from waste streams is suggested and practiced. Electrochemically mediated precipitation (EMP) is a robust and chemical-free process for P removal and recovery, yet it requires further developments. The first generation of the CaCO3-packed electrochemical precipitation column successfully solved the problem of H+-OH- recombination, achieving enhanced P removal efficiency with less energy consumption but suffering from low Ca-phosphate purity in recovered products. Herein, a new concept of a basket-anode electrochemical system is proposed and validated to prevent direct H+-OH- recombination and enhance product purity. The CaCO3 pellets packed basket anode alleviates the OH- depletion by CaCO3-H+ interaction and provides extra Ca2+ for enhanced P removal. The novel structure of the basket anode, by its derived acidic anode region and alkaline cathode region, completely avoids the precipitation of Ca-phosphate on the packed CaCO3 and greatly facilitates the collection of high-quality Ca-phosphate product. Our results suggest that almost 100% of the removed P was in high-purity, highly crystalline Ca-phosphate on the cathode. The recovered products contained significantly more P (13.5 wt%) than in the previous study (0.1 wt%) at similar energy consumptions (29.8 kWh/kg P). The applied current density, pellets size, and influent P concentration were critical for P removal performance, product purity, and power consumption. We further demonstrated the long-term stability of this novel system and its technical and economic feasibility in treating real stored urine. Our study provides new cell architectural designs to enhance the performance of EMP systems and may inspire innovations and developments in other electrochemical water treatment processes.


Assuntos
Fosfatos , Fósforo , Precipitação Química , Eletrodos , Reciclagem
4.
Water Res ; 199: 117199, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34004442

RESUMO

Phosphorus (P) is an irreplaceable element, playing a vital role in living organisms, yet has limited earth reserves. The possibility of P recovery from wastewaters by electrochemically-induced calcium phosphate precipitation (ECaPP) was demonstrated previously. The current study presents a novel scalable prototype consisting of a column-shaped electrochemical reactor, a tubular stainless-steel cathode, and a Pt coated Ti anode. The adhesion of solids to the cathode, important for product recovery, was shown not to be negatively impacted by electrodes' vertical placement. The influence of current (density), hydraulic retention time (HRT), and initial phosphate concentration in this prototype were examined under continuous flow operation. The system accomplished the highest P removal rate (1267 mg/day) at 1.5 d HRT and 800 mA in treating undiluted cheese wastewater with 48.5 kWh/kg P. Moreover, the prototype showed high stability and efficiency (> 50%) over 173 days of continuous operation without performing maintenance. After turning off the current (0 mA), the system realized a surprising P removal jump up to 97.3%, revealing the delayed diffusion of hydroxide ions by the deposition layer. The calculation of CAPEX and OPEX of ECaPP in treating 100 m3 cheese wastewater per week indicates that the ECaPP plant can realize net-positive from the 12th year. The recovered solids have relatively high P content (> 9wt%) and insignificant contamination of heavy metals. Overall, the proven suitability of the scalable prototype can pave the way towards the actual adoption of the ECaPP process.


Assuntos
Fósforo , Águas Residuárias , Eletrodos , Fosfatos , Aço Inoxidável
5.
ACS ES T Water ; 1(4): 1002-1013, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33889867

RESUMO

The recovery of phosphorus (P) from high-strength acidic waste streams with high salinity and organic loads is challenging. Here, we addressed this challenge with a recently developed electrochemical approach and compared it with the chemical precipitation method via NaOH dosing. The electrochemical process recovers nearly 90% of P (∼820 mg/L) from cheese wastewater in 48 h at 300 mA with an energy consumption of 64.7 kWh/kg of P. With chemical precipitation, >86% of P was removed by NaOH dosing with a normalized cost of 1.34-1.80 euros/kg of P. The increase in wastewater pH caused by NaOH dosing triggered the formation of calcium phosphate sludge instead of condensed solids. However, by electrochemical precipitation, the formed calcium phosphate is attached to the electrode, allowing the subsequent collection of solids from the electrode after treatment. The collected solids are characterized as amorphous calcium phosphate (ACP) at 200 mA or a precipitation pH of ≥9. Otherwise, they are a mixture of ACP and hydroxyapatite. The products have sufficient P content (≤14%), of which up to 85% was released within 30 min in 2% citric acid and a tiny amount of heavy metals compared to phosphate rocks. This study paves the way for applying electrochemical removal and recovery of phosphorus from acidic P-rich wastewater and offers a sustainable substitute for mined phosphorus.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa