RESUMO
BACKGROUND AND PURPOSE: Intestinal inflammation and gut microbiota dysbiosis contribute to Parkinson disease (PD) pathogenesis, and growing evidence suggests associations between inflammatory bowel diseases (IBD) and PD. Considered as markers of chronic gastrointestinal inflammation, elevated serum anti-Saccharomyces cerevisiae antibody (ASCA) levels, against certain gut fungal components, are related to IBD, but their effect on PD is yet to be investigated. METHODS: Serum ASCA IgG and IgA levels were measured using an enzyme-linked immunosorbent assay, and the gut mycobiota communities were investigated using ITS2 sequencing and analyzed using the Qiime pipeline. RESULTS: The study included 393 subjects (148 healthy controls [HCs], 140 with PD, and 105 with essential tremor [ET]). Both serum ASCA IgG and IgA levels were significantly higher in the PD group than in the ET and HC groups. Combining serum ASCA levels and the occurrence of constipation could discriminate patients with PD from controls (area under the curve [AUC] = 0.81, 95% confidence interval [CI] = 0.76-0.86) and from patients with ET (AUC = 0.85, 95% CI = 0.79-0.89). Furthermore, the composition of the gut fungal community differed between the PD and HC groups. The relative abundances of Saccharomyces cerevisiae, Aspergillus, Candida solani, Aspergillus flavus, ASV601_Fungi, ASV866_Fungi, and ASV755_Fungi were significantly higher in the PD group, and enriched Malassezia restricta was found in the HC group. CONCLUSIONS: Our study identified elevated serum ASCA levels and enriched gut Saccharomyces cerevisiae in de novo PD.
RESUMO
Parkinson's disease (PD) is the second most common neurodegenerative disease around the world; however, its pathogenesis remains unclear so far. Recent advances have shown that DNA damage and repair deficiency play an important role in the pathophysiology of PD. There is growing evidence suggesting that DNA damage is involved in the propagation of cellular damage in PD, leading to neuropathology under different conditions. Here, we reviewed the current work on DNA damage repair in PD. First, we outlined the evidence and causes of DNA damage in PD. Second, we described the potential pathways by which DNA damage mediates neurotoxicity in PD and discussed the precise mechanisms that drive these processes by DNA damage. In addition, we looked ahead to the potential interventions targeting DNA damage and repair. Finally, based on the current status of research, key problems that need to be addressed in future research were proposed.
Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Doenças Neurodegenerativas/genética , Dano ao DNA , Reparo do DNARESUMO
DNA damage and defective DNA repair are extensively linked to neurodegeneration in Parkinson's disease (PD), but the underlying molecular mechanisms remain poorly understood. Here, we determined that the PD-associated protein DJ-1 plays an essential role in modulating DNA double-strand break (DSB) repair. Specifically, DJ-1 is a DNA damage response (DDR) protein that can be recruited to DNA damage sites, where it promotes DSB repair through both homologous recombination and nonhomologous end joining. Mechanistically, DJ-1 interacts directly with PARP1, a nuclear enzyme essential for genomic stability, and stimulates its enzymatic activity during DNA repair. Importantly, cells from PD patients with the DJ-1 mutation also have defective PARP1 activity and impaired repair of DSBs. In summary, our findings uncover a novel function of nuclear DJ-1 in DNA repair and genome stability maintenance, and suggest that defective DNA repair may contribute to the pathogenesis of PD linked to DJ-1 mutations.
Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Reparo do DNA por Junção de Extremidades , Dano ao DNA , Mutação , Instabilidade Genômica , Poli(ADP-Ribose) Polimerase-1/genéticaRESUMO
BACKGROUND: Emerging evidence indicates that the apolipoprotein E (APOE) ε4 exacerbates α-synuclein pathology. OBJECTIVE: To determine whether APOE ε4 contributes to motor progression in early Parkinson's disease (PD). METHODS: Longitudinal data were obtained from 384 patients with PD divided into APOE ε4 carriers (n = 85) and noncarriers (n = 299) in the Parkinson's Progression Marker Initiative. Participants underwent yearly motor assessments over a mean follow-up period of 78.9 months. Repeated measures and linear mixed models were used to test the effects of APOE ε4. RESULTS: The motor progression was significantly more rapid in patients with PD carrying APOE ε4 than in noncarriers (ß = 0.283, P = 0.026, 95% confidence interval: 0.033-0.532). Through subgroup analysis, we found that the effect of APOE ε4 was significant only in patients with high amyloid ß burden (ß = 0.761, P < 0.001, 95% confidence interval: 0.0356-1.167). CONCLUSIONS: APOE ε4 may be associated with rapid motor progression in PD. © 2021 International Parkinson and Movement Disorder Society.
Assuntos
Apolipoproteína E4 , Doença de Parkinson , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Progressão da Doença , Genótipo , Humanos , Doença de Parkinson/genética , Doença de Parkinson/fisiopatologiaRESUMO
BACKGROUND AND PURPOSE: The insidious onset of Parkinson's disease (PD) makes early diagnosis difficult. Notably, idiopathic rapid eye movement sleep behavior disorder (iRBD) was reported as a prodrome of PD, which may represent a breakthrough for the early diagnosis of PD. However, currently there is no reliable biomarker for PD diagnosis. Considering that α-synuclein (α-Syn) and neuroinflammation are known to develop prior to the onset of clinical symptoms in PD, it was hypothesized that plasma total exosomal α-Syn (t-exo α-Syn), neural-derived exosomal α-Syn (n-exo α-Syn) and exosomal apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) may be potential biomarkers of PD. METHODS: In this study, 78 PD patients, 153 probable iRBD patients (pRBD) and 63 healthy controls (HCs) were recruited. α-Syn concentrations were measured using a one-step paramagnetic particle-based chemiluminescence immunoassay, and ASC levels were measured using the Ella system. RESULTS: It was found that t-exo α-Syn was significantly increased in the PD group compared to the pRBD and HC groups (p < 0.0001), whilst n-exo α-Syn levels were significantly increased in both the PD and pRBD groups compared to HCs (p < 0.0001). Furthermore, although no difference was found in ASC levels between the PD and pRBD groups, there was a positive correlation between ASC and α-Syn in exosomes. CONCLUSIONS: Our results suggest that both t-exo α-Syn and n-exo α-Syn were elevated in the PD group, whilst only n-exo α-Syn was elevated in the pRBD group. Additionally, the adaptor protein of inflammasome ASC is correlated with α-Syn and may facilitate synucleinopathy.
Assuntos
Exossomos , Doença de Parkinson , Transtorno do Comportamento do Sono REM , Humanos , Transtorno do Comportamento do Sono REM/metabolismo , alfa-Sinucleína , Doença de Parkinson/diagnóstico , Exossomos/metabolismo , BiomarcadoresRESUMO
BACKGROUND: Growing evidence suggests important effects of body mass index (BMI) and metabolic status on neurodegenerative diseases. However, the roles of BMI and metabolic status on cognitive outcomes in Parkinson's disease (PD) may vary and are yet to be determined. METHODS: In total, 139 PD patients from the whole PD cohort in Parkinson's Progression Markers Initiative database underwent complete laboratory measurements, demographic and anthropometric parameters at baseline, and were enrolled in this study. Further, they were categorized into 4 different BMI-metabolic status phenotypes using Adult Treatment Panel-III criteria. Motor and cognition scales at baseline and longitudinal changes after a 48-month follow-up were compared among the 4 groups. Repeated-measure linear mixed models were performed to compare PD-related biomarkers among BMI-metabolic status phenotypes across time. RESULTS: We found that PD patients in the metabolically unhealthy normal weight group showed more cognitive decline in global cognition and visuospatial perception after a 48-month follow-up than those in the other 3 groups (p < 0.05). No difference was found in motor scales among different BMI-metabolic status phenotypes. Finally, compared to the metabolically healthy normal weight group, the metabolically healthy obesity group had lower CSF Aß42 and serum neurofilament levels in repeated-measure linear mixed models adjusting for age, gender, APOE e4 carrier status, and years of education (p = 0.031 and 0.046, respectively). CONCLUSION: The MUNW phenotype was associated with a rapid cognitive decline in PD.
Assuntos
Disfunção Cognitiva , Doença de Parkinson , Biomarcadores , Índice de Massa Corporal , Disfunção Cognitiva/complicações , Progressão da Doença , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , FenótipoRESUMO
BACKGROUND: To date, the genetic contribution to Parkinson's disease (PD) remains unclear. Mutations in the collagen type VI alpha 3 (COL6A3) gene were recently identified as a cause of isolated dystonia. Since PD and dystonia are closely related disorders with shared clinical and genetic characteristics, we explored the association between COL6A3 and PD in a Chinese cohort. METHODS: We performed genetic screening of COL6A3 in a Chinese cohort of 173 patients with sporadic PD and 200 healthy controls. We identified variants that are likely to have pathogenic effects based on: 1) a minor allele frequency of < 0.01; and 2) the variant being recognized as deleterious by at least 15 different in silico predicting tools. Finally, we tested the aggregate burden of COL6A3 on PD via SKAT-O analysis. RESULTS: First, we found compound heterozygous COL6A3 gene mutations in one early-onset PD patients. Then, we explored whether COL6A3 variants contributed to increased risk of developing PD in a Chinese population. We detected 21 rare non-synonymous variants. Pathogenicity predictions identified 7 novel non-synonymous variants as likely to be pathogenic. SKAT-O analysis further revealed that an aggregate burden of variants in COL6A3 contributes to PD (p = 0.038). CONCLUSION: An increased aggregate burden of the COL6A3 gene was detected in patients with PD.
Assuntos
Colágeno Tipo VI/genética , Doença de Parkinson/genética , Adulto , Povo Asiático/genética , Estudos de Coortes , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , LinhagemRESUMO
Dopa-responsive dystonia (DRD) comprises a heterogeneous group of movement disorders. A limited number of studies of Chinese patients with DRD have been reported. In the present study, we investigated the clinical and genetic features of 12 Chinese DRD families. Point mutation analysis of the GTP-cyclohydrolase I (GCH1), tyrosine hydroxylase (TH) and sepiapterin reductase (SPR) genes was conducted by direct sequencing. In addition, multiplex ligation-dependent probe amplification targeting GCH1 and TH was performed in "mutation-free" patients. Three reported mutations (IVS2-2A>G, c.293C>T, c.550C>T) were detected in GCH1, whereas two compound heterozygous variants were identified in TH, one of which was novel (c.1083C>A). Furthermore, this novel variant was not detected in any of the 250 ethnicity-matched, healthy controls. No exon deletions or duplicate mutations in the two genes were found in patients with DRD. No mutation in SPR was found. In addition, one patient with the IVS2-2A>G mutation in GCH1 showed signs of Parkinsonism. In conclusion, we here identified a novel heterozygous variant in TH (c.1083C>A). It is important to perform routine screening of GCH1 and TH for patients with DRD. While for patients with Parkinsonism, GCH1 mutation analysis should be performed after screening of genes like PARKIN, PARK7 (DJ-1) and PINK1.
Assuntos
Povo Asiático/genética , Distúrbios Distônicos/genética , GTP Cicloidrolase/genética , Variação Genética/genética , Tirosina 3-Mono-Oxigenase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Criança , Pré-Escolar , Distúrbios Distônicos/diagnóstico , Distúrbios Distônicos/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Mutação Puntual/genética , Adulto JovemAssuntos
Doença de Parkinson , Saposinas , Humanos , Ferro , Doença de Parkinson/tratamento farmacológicoRESUMO
Posterior reversible encephalopathy syndrome (PRES) is a clinical-radiological syndrome characterized by reversible vasogenic edema typically at a posterior location of the cerebrum. PRES with prominent brainstem or basal ganglia involvement is defined as central-variant, which is rare. We herein report an atypical case of a 35-year-old man with a 2-year history of untreated hypertension who complained of recurrent dizziness. The patient presented with brainstem and diffuse white matter involvement associated with intracranial hemorrhage and recovered fully after therapy. Recognition of this uncommon benign syndrome as a potentially treatable disorder can be of great importance.
Assuntos
Hemorragias Intracranianas/etiologia , Leucoencefalopatias/complicações , Síndrome da Leucoencefalopatia Posterior/complicações , Substância Branca , Adulto , Anti-Hipertensivos/uso terapêutico , Tronco Encefálico/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Hidratação , Humanos , Hemorragias Intracranianas/diagnóstico por imagem , Hemorragias Intracranianas/terapia , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/terapia , Masculino , Síndrome da Leucoencefalopatia Posterior/diagnóstico por imagem , Síndrome da Leucoencefalopatia Posterior/terapia , Resultado do Tratamento , Substância Branca/diagnóstico por imagemRESUMO
Patients with bilateral vertebral artery occlusion have a high incidence of cerebral infarction with poor prognosis. Infarction of bilateral middle cerebellar peduncle (MCP) is extremely rare and only a few cases have been reported in literature. A 74-year-old male patient was admitted to our hospital with a chief complaint of dizziness and walking instability for 13 d. Brain magnetic resonance image showed acute bilateral middle cerebellar peduncle infarction. Digital subtraction angiography showed occlusion of the initiation part of left vertebral artery and whole right vertebral artery, while a large amount of collateral circulations and recanalization were observed. After volume expansion, anti-platelet aggregation and lipid-lowering therapy, the symptoms disappeared. The patient was followed up for 10 months and he recovered well.
Assuntos
Infarto Cerebral , Pedúnculo Cerebelar Médio/fisiopatologia , Artéria Vertebral/fisiopatologia , Idoso , Angiografia Digital , Cerebelo , Circulação Colateral , Humanos , MasculinoRESUMO
OBJECTIVE: To construct wild-type and mutant pEGFP SPAST vectors and to explore the molecular mechanism of hereditary spastic paraplegia. METHODS: Mutant SPAST vector was constructed using overlap PCR method following construction of wild-type SPAST vector. Wild-type and mutant constructs were transfected to COS7 cells and subcellular localization of spastin was observed. Co-localizations of spastin and microtubule, spastin and mitochondria were viewed by immunofluorescence staining. RESULTS: Wild-type spastin is localized in plasma, and mutant spastin did not change its cellular localization. Wild-type and mutant spastins did not co-localize with microtubules and mitochondria by immunofluorescence analysis. CONCLUSION: Wild-type and mutant SPAST constructs were successfully generated. Mutant spastin did not change its localization in cells. Spastin does not co-localize with microtubules and mitochondria. This study may facilitate further studies on molecular mechanism of hereditary spastic paraplegia.
Assuntos
Adenosina Trifosfatases/genética , Mutação , Paraplegia Espástica Hereditária/genética , Adenosina Trifosfatases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Vetores Genéticos/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Paraplegia Espástica Hereditária/metabolismo , EspastinaRESUMO
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease with a significant public health burden. It is characterized by the gradual degeneration of dopamine neurons in the central nervous system. Although symptomatic pharmacological management remains the primary therapeutic method for PD, clinical experience reveals significant inter-individual heterogeneity in treatment effectiveness and adverse medication responses. The mechanisms behind the observed interindividual variability may be elucidated by investigating the role of genetic variation in human-to-human variances in medication responses and adverse effects. OBJECTIVE: This review aims to explore the impact of gene polymorphism on the efficacy of antiparkinsonian drugs. The identification of factors associated with treatment effectiveness variability might assist the creation of a more tailored pharmacological therapy with higher efficacy, fewer side outcomes, and cheaper costs. METHODS: In this review, we conducted a thorough search in databases such as PubMed, Web of Science, and Google Scholar, and critically examined current discoveries on Parkinson's disease pharmacogenetics. The ethnicity of the individuals, research methodologies, and potential bias of these studies were thoroughly compared, with the primary focus on consistent conclusions. RESULTS: This review provides a summary of the existing data on PD pharmacogenetics, identifies its limitations, and offers insights that may be beneficial for future research. Previous studies have investigated the impact of gene polymorphism on the effectiveness and adverse effects of levodopa. The trendiest genes are the COMT gene, DAT gene, and DRD2 gene. However, limited study on other anti-Parkinson's drugs has been conducted. CONCLUSION: Therefore, In order to develop an individualized precision treatment for PD, it is an inevitable trend to carry out multi-center, prospective, randomized controlled clinical trials of PD pharmacogenomics covering common clinical anti-PD drugs in large, homogeneous cohorts.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Farmacogenética/métodos , Doenças Neurodegenerativas/tratamento farmacológico , Estudos Prospectivos , Antiparkinsonianos/uso terapêutico , Levodopa/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológicoRESUMO
Microglial hyperactivation of the NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome contributes to the pathogenesis of Parkinson's disease (PD). Recently, neuronally expressed NLRP3 was demonstrated to be a Parkin polyubiquitination substrate and a driver of neurodegeneration in PD. However, the role of Parkin in NLRP3 inflammasome activation in microglia remains unclear. Thus, we aimed to investigate whether Parkin regulates NLRP3 in microglia. We investigated the role of Parkin in NLRP3 inflammasome activation through the overexpression of Parkin in BV2 microglial cells and knockout of Parkin in primary microglia after lipopolysaccharide (LPS) treatment. Immunoprecipitation experiments were conducted to quantify the ubiquitination levels of NLRP3 under various conditions and to assess the interaction between Parkin and NLRP3. In vivo experiments were conducted by administering intraperitoneal injections of LPS in wild-type and Parkin knockout mice. The Rotarod test, pole test, and open field test were performed to evaluate motor functions. Immunofluorescence was performed for pathological detection of key proteins. Overexpression of Parkin mediated NLRP3 degradation via K48-linked polyubiquitination in microglia. The loss of Parkin activity in LPS-induced mice resulted in excessive microglial NLRP3 inflammasome assembly, facilitating motor impairment, and dopaminergic neuron loss in the substantia nigra. Accelerating Parkin-induced NLRP3 degradation by administration of a heat shock protein (HSP90) inhibitor reduced the inflammatory response. Parkin regulates microglial NLRP3 inflammasome activation through polyubiquitination and alleviates neurodegeneration in PD. These results suggest that targeting Parkin-mediated microglial NLRP3 inflammasome activity could be a potential therapeutic strategy for PD.
Assuntos
Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Microglia/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Peripheral immune cells play a vital role in the development of Parkinson's disease (PD). However, their cytokine and chemokine secretion functions remain unclear. Therefore, we aimed to explore the cytokine and chemokine secretion functions of specific immune cell subtypes in drug-naïve patients with PD at different ages of onset. We included 10 early-onset and 10 late-onset patients with PD and age-matched healthy controls (HCs). We used mass cytometry to select specific immune cell subsets and evaluate intracellular cytokine and chemokine expression. Statistical tests included t-tests, analysis of variance, bivariate correlation analysis, and linear regression analysis. Compared with HCs, patients with PD exhibited significantly decreased intracellular pro-inflammatory cytokines and chemokines in selected clusters (e.g., tumor necrosis factor (TNF)-α, interleukin (IL)-8, IL-1ß, and CC-chemokine ligand (CCL)17). Specific cytokines and cell clusters were associated with clinical symptoms. TNF-α played an important role in cognitive impairment. Intracellular TNF-α levels in the naïve CD8+ T-cell cluster C16 (CD57- naïve CD8+ T) and natural killer (NK) cell cluster C32 (CD57- CD28- NK) were negatively correlated with Montreal Cognitive Assessment scores. The C16 cluster affected cognitive function and motor symptoms. Increased TNF-α and decreased interferon-γ expression in C16 correlated with increased Unified Parkinson's Disease Rating Scale III scores in patients with PD. In summary, we developed a more detailed cytokine and chemokine map of peripheral specific CD8+ T cell and NK cell subsets, which revealed disrupted secretory function in patients with PD and provided unique clues for further mechanistic exploration.
RESUMO
Multiple single nucleotide polymorphisms may contribute to cognitive decline in Parkinson's disease. However, the mechanism by which these single nucleotide polymorphisms modify brain imaging phenotype remains unclear. The aim of this study was to investigate the potential effects of multiple single nucleotide polymorphisms on brain imaging phenotype in Parkinson's disease. Forty-eight Parkinson's disease patients and 39 matched healthy controls underwent genotyping and 7T magnetic resonance imaging. A cognitive-weighted polygenic risk score model was designed, in which the effect sizes were determined individually for 36 single nucleotide polymorphisms. The correlations between polygenic risk score, neuroimaging features, and clinical data were analyzed. Furthermore, individual single nucleotide polymorphism analysis was performed to explore the main effects of genotypes and their interactive effects with Parkinson's disease diagnosis. We found that, in Parkinson's disease, the polygenic risk score was correlated with the neural activity of the hippocampus, parahippocampus, and fusiform gyrus, and with hippocampal-prefrontal and fusiform-temporal connectivity, as well as with gray matter alterations in the orbitofrontal cortex. In addition, we found that single nucleotide polymorphisms in α-synuclein (SNCA) were associated with white matter microstructural changes in the superior corona radiata, corpus callosum, and external capsule. A single nucleotide polymorphism in catechol-O-methyltransferase was associated with the neural activities of the lingual, fusiform, and occipital gyri, which are involved in visual cognitive dysfunction. Furthermore, DRD3 was associated with frontal and temporal lobe function and structure. In conclusion, imaging genetics is useful for providing a better understanding of the genetic pathways involved in the pathophysiologic processes underlying Parkinson's disease. This study provides evidence of an association between genetic factors, cognitive functions, and multi-modality neuroimaging biomarkers in Parkinson's disease.
RESUMO
BACKGROUND: There is no standard endovascular treatment for extracranial internal carotid artery dissecting aneurysms. In the past, stent-graft isolation and stent-assisted coil embolization were commonly used for wide-necked and fusiform aneurysms. Here, we present two cases of extracranial internal carotid artery dissecting aneurysms treated successfully using the SUPERA stent. CASE SUMMARY: Case 1 was a 57-year-old male patient with sudden right limb weakness and vague speech and diagnosed with cerebral infarction in February 2019. Cervical computed tomographic angiography (CTA) revealed left internal carotid artery dissection with stenosis. CTA at 2 mo showed an eccentric wide-necked dissecting aneurysm (5 mm × 5 mm × 12 mm, 10-mm neck) that was enlarged at 4 mo (7 mm × 6 mm × 12 mm, 11-mm neck). The patient underwent SUPERA stent implantation. His condition was stable in July 2020. Case 2 was a 57-year-old man who suddenly felt dizzy and developed unsteady walking in November 2019. Cervical CTA suggested right internal carotid artery dissecting aneurysm (11 mm × 9 mm × 31 mm) complicated with severe lumen stenosis (95%). The patient underwent SUPERA stent implantation. The patient had no residual symptoms and was stable in December 2020. CONCLUSION: SUPERA stent implantation might achieve good results in treating wide-necked or long fusiform internal carotid artery dissecting aneurysms.
RESUMO
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of midbrain substantia nigra pars compacta dopaminergic neurons and the formation of Lewy bodies. Over the years, researchers have gained extensive knowledge about dopaminergic neuron degeneration from the perspective of the environmental and disease-causing genetic factors; however, there is still no disease-modifying therapy. Aging has long been recognized as a major risk factor for PD; however, little is known about how aging contributes to the disease development. Genome instability is the main driving force behind aging, and has been poorly studied in patients with PD. Here, we summarize the evidence for nuclear DNA damage in PD. We also discuss the molecular mechanisms of nuclear DNA damage and repair in PD, especially from the perspective of familial PD-related mutant genes. Understanding the significance of DNA damage and repair may provide new potential intervention targets for treating PD.
RESUMO
OBJECTIVE: This study aimed to investigate the utility of inflammatory markers of hemogram parameters as objective indicators of disease severity in anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis. METHODS: A total of 98 patients were retrospectively reviewed. Inflammatory markers of hemogram parameters, including neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR), and platelet-lymphocyte ratio, were acquired within 24 h of admission. We then analyzed their utility as predictive factors for disease severity at different time points assessing with the modified Rankin Scale (mRS). RESULTS: There were 49 patients in the mild group (mRS ≤ 2) and 49 patients in the moderate-to-severe (mRS > 2) group at admission. The moderate-to-severe group presented more frequently with psychiatric symptoms and central hypoventilation, as well as a lower lymphocyte count, a higher neutrophil count, a higher NLR and a higher MLR (all p < 0.05) when compared with the mild group. NLR and MLR showed similar positive correlations with mRS scores (r = 0.40, r = 0.40, both p < 0.001). Further multivariate logistic regression analyses indicated that NLR > 4.232 was an independent risk factor for moderate-to-severe status at admission. Meanwhile, NLR and MLR were associated with disease severity at different stages of follow-up but showed no independent predictive value. CONCLUSION: Our findings suggested that NLR was an independent risk factor for moderate-to-severe status in the initial stage of anti-NMDAR encephalitis with a cut-off value of > 4.232.