Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anal Bioanal Chem ; 416(6): 1375-1387, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38270633

RESUMO

As an important endogenous gasotransmitter, hydrogen sulfide (H2S) plays a critical role in various physiological functions and has been regarded as a biomarker of cancer due to its overexpression in cancer cells. In addition, the early stages of cancer are often accompanied by abnormalities in the intracellular microenvironments, and distinguishing between cancer cell/tissues and normal cell/tissues is of great significance to the accuracy of cancer diagnosis. However, deep insights into the simultaneous detection of H2S and viscosity/polarity variations in cancer cells/tissues are rarely reported. In this work, we designed and synthesized a mitochondria-targeting fluorescent probe PDQHS, which exhibits high selectivity for H2S with an emission peak around 632 nm and excellent response (17-fold) to viscosity/polarity beyond 706 nm. Meanwhile, PDQHS shows good biocompatibility and can specifically accumulate into mitochondria. Using PDQHS, the visual distinguishing of cancer cells from normal cells was achieved via dual-channel detection of H2S and viscosity/polarity. More importantly, PDQHS has been successfully applied to visualize endogenous and exogenous H2S in living cells and tumor tissue. Obviously, compared to the detection of a single biomarker, monitoring multiple biomarkers simultaneously through dual-channel response is conducive to amplifying the detection signal, providing a more sensitive and reliable imaging tool in the tumor region, which is beneficial for cancer prediction.


Assuntos
Sulfeto de Hidrogênio , Neoplasias , Humanos , Corantes Fluorescentes , Viscosidade , Células HeLa , Imagem Óptica , Biomarcadores , Neoplasias/diagnóstico por imagem
2.
Molecules ; 29(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792029

RESUMO

In this study, Cu2+ modulated silver nanoclusters were constructed for the turn-on, label-free detection of L-histidine. Six Ag NCs protected by oligonucleotides (DNA-Ag NCs) were tested in a series of experiments. Finally, A-DAN-Ag NCs were chosen as the best candidate due to their excellent fluorescent properties. The fluorescence of A-DAN-Ag NCs was quenched using Cu2+ through energy or electron transfer. However, quenched fluorescence could be restored dramatically in the presence of L-histidine due to Cu2+ liberation from A-DAN-Ag NCs and because of the chelation between the imidazole group of L-histidine and Cu2+. The proposed sensor exhibited high selectivity towards L-histidine over other amino acids, with a limit of detection (LOD) of 0.096 µM ranging from 0 to 8 µM. The proposed sensor succeeded in detecting L-histidine in diluted human urine. Therefore, the sensor has promising practical applications in biological systems.


Assuntos
Cobre , Histidina , Nanopartículas Metálicas , Prata , Espectrometria de Fluorescência , Histidina/química , Histidina/urina , Histidina/análise , Cobre/química , Cobre/análise , Prata/química , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , Humanos , Limite de Detecção , Técnicas Biossensoriais/métodos , Fluorescência , Íons , Corantes Fluorescentes/química
3.
Plant Dis ; 2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36774581

RESUMO

Water lettuce (Pistia stratiotes L.), is one of the emerging invasive weeds for inland water bodies in Asia and become a major problem for local water ecosystem. Biocontrol of water lettuce by mycobiota is being considered as a promising and sustainable method (Kongjornrak et al. 2019). During July 2021, a leaf blight of water lettuce was observed within about 1.5 ha in Shenxi stream (N25°66', E119°05') in Putian, Fujian, China. The disease severity was about 100% with 80% incidence, early symptoms appeared as small irregularly yellow or brown blight, severely infected leaves turned to be rot, then death and sink. Small pieces (5 × 5 mm) of symptomatic leaves were excised and surface disinfected with 75% ethanol and 0.1% HgCl2 solution, air dried and plated on potato dextrose agar (PDA). 3~5 days after incubation at 28°C, six fungal pure cultures showing similar morphology were obtained from the infected leaves. On PDA, colonies were flat, aerial mycelium grew sparsely, most of it grew inside the agar medium, it reverses white to grey to black with age. Hyphae were branched, septate, smooth and hyaline. Conidiophores mostly reduced to conidiogenous cells and setae were not observed. Conidiogenous cells were monoblastic, discrete and solitary, at first hyaline, subspherical, then turning to pale brown, ampulliform, 4.5-10 × 3.5-6 µm in size. Conidia were solitary, globose or ellipsoidal, black, smooth, some of it formed directly from the mycelia, aseptate, 8-12 µm diam (n=10). Genomic DNA was extracted from one of the representative isolate Z1. ITS1/ITS4 (Mills et al. 1992), Bt-2a/Bt-2b (Glass and Donaldson 1995) and EF1-728F/EF-2 (O'Donnell et al. 1998) primer pairs were used to amplify the isolate's internal transcribed spacer (ITS), the Beta-tubulin fragment (TUB) and the partial translation elongation factor (TEF1), respectively. The isolate's sequences were deposited in the GenBank with accession numbers of OM279539 (ITS), OM296034 (TUB) and OM296035 (TEF1). Phylogenetic analysis using maximum likelihood based on the ITS-TUB-TEF1 concatenated sequences from Nigrospora species revealed that isolate Z1 is closely clustered with N. osmanthi strain LC4487. The fungus was identified as N. osmanthi based on the morphological characteristics and molecular analyses (Hao et al. 2020; Wang et al. 2017). Pathogenicity test were performed using twenty inoculated and control plants, respectively. Conidial suspensions (107 CFU/ml) of Z1 isolate were spray-inoculated on the leaves of healthy water lettuce seedlings, while sterile distilled water was used as control. Inoculated and control plants were kept in the differential 50-liter plastic tanks and maintained in a greenhouse at room temperature (19 to 24°C) for one month. Symptoms appeared 7 days post inoculation, which was similar to what occurs in the field. No symptoms occurred on controls. Pathogen was reisolated and confirmed by morphology and molecular analysis. Koch's postulates were conducted twice. N. osmanthi is a pathogenic fungus of many crop plants, such as buckwheat (Shen et al 2021), Java tea (Ismail et al. 2022) or buffalograss (Mei et al. 2019) in Asia and particularly in China. However, to our knowledge, this is the first report of N. osmanthi causing leaf blight on water lettuce. Further studies on how to apply formulated N. osmanthi will be required so that the strain could be effectively used to control water lettuce, moreover, its environmental safety also need a rigorous experimental evaluation.

4.
Biochem Biophys Res Commun ; 589: 71-77, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34894559

RESUMO

Hyccin/FAM126A mutations are linked to hypomyelination and congenital cataract disease (HCC), but whether and how Hyccin/FAM126A deficiency causes hypomyelination remains undetermined. This study shows Hyccin/FAM126A expression was necessary for the expression of other components of the PI4KIIIα complex in Drosophila. Knockdown of Hyccin/FAM126A in glia reduced the enrichment of glial cells, disrupted axonal sheaths and visual ability in the visual system, and these defects could be fully rescued by overexpressing either human FAM126A or FAM126B, and partially rescued by overexpressing a plasma membrane-targeting recombinant mouse PI4KIIIα. Additionally, PI4KIIIα knockdown in glia phenocopied Hyccin/FAM126A knockdown, and this was partially rescued by overexpressing the recombinant PI4KIIIα, but not human FAM126A or FAM126B. This study establishes an animal model of HCC and indicates that Hyccin/FAM126A plays an essential role in glial enrichment and axonal sheath in a cell-autonomous manner in the visual system via controlling the expression and stabilization of the PI4KIIIα complex at the plasma membrane.


Assuntos
Axônios , Membrana Celular , Proteínas de Drosophila , Drosophila melanogaster , Antígenos de Histocompatibilidade Menor , Neuroglia , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Axônios/metabolismo , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multiproteicos/metabolismo , Neuroglia/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Vias Visuais/metabolismo
5.
Anal Bioanal Chem ; 412(11): 2529-2536, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32043202

RESUMO

A simple turn-on fluorescence strategy is proposed for the detection of ATP based on DNA-stabilized copper/silver nanoclusters (DNA-Cu/Ag NCs). The fluorescence intensity of DNA-Cu/Ag NCs increases significantly in the presence of ATP, because the specific interaction between ATP and its aptamer causes two darkish Cu/Ag NCs to be situated at the 5' and 3' termini close to each other. A limit of detection (LOD) of 7.0 µM is found, in a linear range of 2-18 mM, and the proposed sensor is simple, sensitive, and selective. Additionally, the DNA-Cu/Ag NCs/ATP system is further developed into a sensor for ADA detection and demonstrates a linear response to ADA from 5 to 50 U/L with a LOD of 5 U/L. The proposed method is also shown to be successful in detecting ATP and ADA in a solution of fetal bovine serum.


Assuntos
Adenosina Desaminase/análise , Trifosfato de Adenosina/análise , Técnicas Biossensoriais/métodos , Cobre/química , Nanopartículas Metálicas/química , Prata/química , Adenosina Desaminase/sangue , Trifosfato de Adenosina/sangue , Animais , Bovinos , Corantes Fluorescentes/química , Ácidos Nucleicos Imobilizados/química , Espectrometria de Fluorescência/métodos
6.
J Neurosci ; 37(19): 4928-4941, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28424219

RESUMO

Phosphoinositides and their metabolizing enzymes are involved in Aß42 metabolism and Alzheimer's disease pathogenesis. In yeast and mammals, Eighty-five requiring 3 (EFR3), whose Drosophila homolog is Rolling Blackout (RBO), forms a plasma membrane-localized protein complex with phosphatidylinositol-4-kinase Type IIIα (PI4KIIIα) and a scaffold protein to tightly control the level of plasmalemmal phosphatidylinositol-4-phosphate (PI4P). Here, we report that RBO binds to Drosophila PI4KIIIα, and that in an Aß42-expressing Drosophila model, separate genetic reduction of PI4KIIIα and RBO, or pharmacological inhibition of PI4KIIIα ameliorated synaptic transmission deficit, climbing ability decline, premature death, and reduced neuronal accumulation of Aß42 Moreover, we found that RBO-PI4KIIIa downregulation increased neuronal Aß42 release and that PI4P facilitated the assembly or oligomerization of Aß42 in/on liposomes. These results indicate that RBO-PI4KIIIa downregulation facilitates neuronal Aß42 release and consequently reduces neuronal Aß42 accumulation likely via decreasing Aß42 assembly in/on plasma membrane. This study suggests the RBO-PI4KIIIα complex as a potential therapeutic target and PI4KIIIα inhibitors as drug candidates for Alzheimer's disease treatment.SIGNIFICANCE STATEMENT Phosphoinositides and their metabolizing enzymes are involved in Aß42 metabolism and Alzheimer's disease pathogenesis. Here, in an Aß42-expressing Drosophila model, we discovered and studied the beneficial role of downregulating RBO or its interacting protein PI4KIIIα-a protein that tightly controls the plasmalemmal level of PI4P-against the defects caused by Aß42 expression. Mechanistically, RBO-PI4KIIIα downregulation reduced neuronal Aß42 accumulation, and interestingly increased neuronal Aß42 release. This study suggests the RBO-PI4KIIIα complex as a novel therapeutic target, and PI4KIIIα inhibitors as new drug candidates.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Animais Geneticamente Modificados , Regulação para Baixo , Drosophila/genética , Doenças do Sistema Nervoso/patologia , Fragmentos de Peptídeos/genética
7.
BMC Cancer ; 16: 669, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549330

RESUMO

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of head-neck cancer with a distinguishable geographic and racial distribution worldwide. Increasing evidence supports that the accumulation of additional genetic and epigenetic abnormalities is important in driving the NPC tumorigenic process. In this study, we aim to investigate the association between EIF5A2 (Eukaryotic translation initiation factor 5A2) expression status and NPC clinical outcomes. METHODS: The expression status of EIF5A2 was investigated in the NPC tissue microarray. Tissues were from 166 NPC patients staging II-IV, collected between 1999 and 2005. All patients were administered 2-3 cycles of DDP (cisplatin) + 5-Fu (5-fluorouracil) induction therapy and then treated with a uniform conventional two-dimensional radiotherapy. Cell motility assay, tumor growth assay and cytotoxicity assay were performed on the EIF5A2 overexpressed cells and control cells. siRNA was also used in the in vitro studies. RESULTS: Positive staining of EIF5A2 was observed in 85.4 % (105/123) informative tumor cases. Multivariate analyses demonstrated that EIF5A2 was an independent prognostic marker of poor overall survival (OS) (P = 0.041), failure-free survival (FFS) (P = 0.029), and distant failure-free survival (D-FFS) (P = 0.043) in patients with locoregionally advanced NPC patients treated with cisplatin + 5-Fu chemoradiotherapy. The forced expression of EIF5A2 in NPC cells enhanced the cells' motility and growth ability. Knock-down of EIF5A2 in NPC cells decreased the cell's motility and growth ability. Our results also demonstrated that EIF5A2 overexpression induced chemoresistance of NPC cells to 5-Fu. CONCLUSIONS: Our findings suggested that EIF5A2 expression, as examined by immunohistochemistry, could function as an independent prognostic factor of outcomes in NPC patients with cisplatin + 5-Fu chemoradiotherapy. EIF5A2 might be a novel therapeutic target for the inhibition of NPC progress.


Assuntos
Carcinoma/tratamento farmacológico , Carcinoma/mortalidade , Quimioterapia de Indução/métodos , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/mortalidade , Fatores de Iniciação de Peptídeos/biossíntese , Proteínas de Ligação a RNA/biossíntese , Adulto , Idoso , Biomarcadores Tumorais/genética , Carcinoma/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Quimiorradioterapia/métodos , Cisplatino/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Fatores de Iniciação de Peptídeos/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Adulto Jovem , Fator de Iniciação de Tradução Eucariótico 5A
8.
Carcinogenesis ; 35(5): 1154-61, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24510112

RESUMO

Here, we report the characterization of a candidate tumor suppressor gene leucine-rich glioma inactivated 1 (LGI1) in human esophageal squamous cell carcinoma (ESCC). Downregulation of LGI1 has been detected in approximately 50% of primary ESCCs, which was significantly associated with advanced clinical stage (P < 0.001), lymph node metastasis (P < 0.001), tumor invasion (P = 0.009) and poor disease-specific survival (P < 0.001). Functional studies found that LGI1 could inhibit cell growth, clonogenicity, cell motility and tumor formation in nude mice. Mechanistic investigations suggested that LGI1 acted through extracellular signal-regulated kinase (ERK1/2) signaling to downregulate matrix metalloproteinase (MMP)-3 expression and subsequently suppressed tumor metastasis. Taken together, our study revealed that LGI1 plays an important tumor suppressive role in the development and progression of ESCC, with possible application in clinics as a biomarker and a potential new therapeutic target.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas/genética , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago , Feminino , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 3 da Matriz/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Interferência de RNA , Proteínas Supressoras de Tumor/genética
9.
RSC Adv ; 14(8): 5594-5599, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38352688

RESUMO

A turn-on fluorescence nanoprobe was constructed for the determination of adenosine 5'-triphosphate (ATP) based on DNA-templated silver nanoclusters (DNA-AgNCs). The significant enhancement fluorescence intensity of DNA-AgNCs in the presence of ATP is due to the high special binding affinity between ATP and the aptamer, resulting in the environment of DNA-AgNCs with darkish fluorescence lying at one terminus of DNA slightly altering owing to the change of ATP aptamer conformation. A good linear range runs from 9 to 24 mM with a satisfactory detection limit of 3 µM. Furthermore, the proposed nanoprobe exhibited good performance for ATP detection in diluted fetal bovine serum.

10.
Front Mol Biosci ; 10: 1266515, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854038

RESUMO

Background: Hepatocellular carcinoma (HCC) is extremely malignant and difficult to treat. The adenoviral early region 2 binding factors (E2Fs) target pathway is thought to have a major role in tumor growth. This study aimed to identify a predictive E2F target signature and facilitate individualized treatment for HCC patients. Methods: We constructed an E2F target-related gene profile using univariate COX and LASSO regression models and proved its predictive efficacy in external cohorts. Furthermore, we characterized the role of the E2F target pathway in pathway enrichment, immune cell infiltration, and drug sensitivity of HCC. Results: Lasso Cox regression created an E2F target-related gene signature of GHR, TRIP13, and CDCA8. HCC patients with high risk were correlated with shorter survival time, immune evasion, tumor stem cell characteristics and high sensitivity to Tipifarnib and Camptothecin drugs. Conclusion: Hepatocellular carcinoma prognosis was predicted by an E2F target signature. This finding establishes the theoretical usefulness of the E2F target route in customized identification and treatment for future research.

11.
Nanoscale ; 15(26): 10904-10938, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37337814

RESUMO

Glioblastoma (GBM) treatment is still a big clinical challenge because of its highly malignant, invasive, and lethal characteristics. After treatment with the conventional therapeutic paradigm of surgery combined with radio- and chemotherapy, patients bearing GBMs generally exhibit a poor prognosis, with high mortality and a high disability rate. The main reason is the existence of the formidable blood-brain barrier (BBB), aggressive growth, and the infiltration nature of GBMs. Especially, the BBB suppresses the delivery of imaging and therapeutic agents to lesion sites, and thus this leads to difficulties in achieving a timely diagnosis and treatment. Recent studies have demonstrated that extracellular vesicles (EVs) exhibit favorable merits including good biocompatibility, a strong drug loading capacity, long circulation time, good BBB crossing efficiency, specific targeting to lesion sites, and high efficiency in the delivery of a variety of cargos for GBM therapy. Importantly, EVs inherit physiological and pathological molecules from the source cells, which are ideal biomarkers for molecularly tracking the malignant progression of GBMs. Herein, we start by introducing the pathophysiology and physiology of GBMs, followed by presenting the biological functions of EVs in GBMs with a special focus on their role as biomarkers for GBM diagnosis and as messengers in the modulation of the GBM microenvironment. Furthermore, we provide an update on the recent progress of using EVs in biology, functionality, and isolation applications. More importantly, we systematically summarize the most recent advances of EV-based carriers for GBM therapy by delivering different drugs including gene/RNA-based drugs, chemotherapy drugs, imaging agents, and combinatory drugs. Lastly, we point out the challenges and prospects of future research on EVs for diagnosing and treating GBMs. We hope this review will stimulate interest from researchers with different backgrounds and expedite the progress of GBM treatment paradigms.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Humanos , Glioblastoma/diagnóstico , Glioblastoma/terapia , Glioblastoma/patologia , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Barreira Hematoencefálica/patologia , Comunicação Celular , Microambiente Tumoral
12.
Clin Respir J ; 17(6): 527-535, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37158128

RESUMO

INTRODUCTION: Low-level pressure support ventilation (PSV) is most commonly adopted in spontaneous breathing trials (SBTs), and some have proposed setting the positive end-expiratory pressure (PEEP) to 0 cmH2 O in order to shorten the observation time of SBTs. This study aims to investigate the effects of two PSV protocols on the patients' respiratory mechanics. MATERIAL AND METHOD: A prospective randomized self-controlled crossover design was adopted in this study, which involved enrolling 30 difficult-to-wean patients who were admitted to the intensive care unit of the First Affiliated Hospital of Guangzhou Medical University between July 2019 and September 2021. Patients were subjected to the S group (pressure support: 8 cmH2 O, PEEP: 5 cmH2 O) and S1 group (PS: 8 cmH2 O, PEEP: 0 cmH2 O) for 30 min in a random order, and respiratory mechanics indices were dynamically monitored via a four-lumen multi-functional catheter with an integrated gastric tube. Among the 30 enrolled patients, 27 were successfully weaned. RESULT: The S group showed higher airway pressure (Paw), intragastric pressure (Pga) and airway pressure-time product (PTP) than the S1 group. The S group also showed a shorter inspiratory trigger delay, (93.80 ± 47.85) versus (137.33 ± 85.66) ms (P = 0.004); and fewer abnormal triggers, (0.97 ± 2.65) versus (2.67 ± 4.48) (P = 0.042) compared with the S1 group. Stratification based on the causes of mechanical ventilation revealed that under the S1 protocol, patients with chronic obstructive pulmonary disease (COPD) had a longer inspiratory trigger delay compared to both post-thoracic surgery (PTS) patients and patients with acute respiratory distress syndrome. Despite providing greater respiratory support, S group led to significant reductions in inspiratory trigger delay and less abnormal triggers compared to S1 group, especially among patients with chronic obstructive pulmonary disease. CONCLUSION: These findings suggest that the zero PEEP group was more likely to induce a higher number of patient-ventilator asynchronies in difficult-to-wean patients.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Respiração Artificial , Humanos , Respiração Artificial/métodos , Estudos Prospectivos , Respiração com Pressão Positiva/métodos , Mecânica Respiratória
13.
Ann Transl Med ; 11(2): 86, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36819546

RESUMO

Background: Prone position ventilation (PPV) has been recommended for patients with acute respiratory distress syndrome (ARDS) to improve oxygenation. However, whether prolonged prone ventilation will aggravate hyperoxia and whether abdominal compression will aggravate permissive hypercapnia acidosis are topics of concern. We carried out a retrospective analysis to investigate the issues above. Methods: Clinical data were collected from 97 moderate-to-severe ARDS patients who received PPV as part of their treatment in the intensive care unit (ICU) of the First Affiliated Hospital of Guangzhou Medical University from November 2015 to May 2021. We collected arterial blood gas of patients according to the 3 periods: supine position ventilation (SPV), PPV early stage (within 4 hours), and PPV middle and late stage (6 hours or later). We established a linear mixed-effects models with "body position changes, times of PPV, gender, age, baseline SOFA, and baseline APACHE II" as fixed effects, and individual and the number of prone positions as random intercept and random slope to investigate the effect of body position changes on blood gas analysis. Results: Among the 97 patients received PPV included, 51 were ICU survivors. Arterial partial pressure of oxygen (PaO2) and PaO2/fraction of inspired oxygen (FiO2) ratio were significantly higher at the early, middle and late stages of PPV than those in SPV [PFR (mmHg): 158 (118.00, 203.00) vs. 161 (129.00, 202.75) vs. 123 (91.75, 163.00), P<0.05]. Despite the synchronized reduction of FiO2, the incidence of hyperoxia in the prone position was still significantly higher than that in the supine position [hyperoxia (%):33.33 vs. 33.56 vs. 12.42, P<0.05]; there was no significant change in arterial carbon dioxide partial pressure (PaCO2) at each stage of PPV, but there was a significant increase in PH at PPV middle and late stages than those at early stage [PH: 7.39 (7.34, 7.42) vs. 7.37 (7.31, 7.41), P<0.05]. Conclusions: Although PPV improves the patients' oxygenation, the associated incidence of hyperoxia exceeds 33%. Down-regulate FiO2 more sharply after PPV is necessary, if oxygenation conditions permit. PPV may alleviate the acidosis associated with permissive hypercapnia in ARDS patients treated with lung protective ventilation strategy (LPVS).

14.
Theranostics ; 13(7): 2176-2191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153731

RESUMO

Background: Currently, the prognosis and survival rate for patients bearing non-small cell lung cancer (NSCLC) is still quite poor, mainly due to lack of efficient theranostic paradigms to exert in time diagnostics and therapeutics. Methods: Herein, for NSCLC treatment, we offer a customized theranostic paradigm, termed NIR-IIb fluorescence diagnosis and synergistic surgery/starvation/chemodynamic therapeutics, with a newly designed theranostic nanoplatform PEG/MnCuDCNPs@GOx. The nanoplatform is composed of brightly NIR-II emissive downconversion nanoparticles (DCNPs)-core and Mn/Cu-silica shell loaded with glucose oxidase (GOx) to achieve synergistic starvation and chemodynamic therapy (CDT). Results: It is found that 10% Ce3+ doped in the core and 100% Yb3+ doped in the middle shell greatly improves the NIR-IIb emission up to even 20.3 times as compared to the core-shell DCNPs without Ce3+ doping and middle shell. The bright NIR-IIb emission of the nanoplatform contributes to sensitive margin delineation of early-stage NSCLC (diameter < 1 mm) with a signal-to-background ratio (SBR) of 2.18, and further assists in visualizing drug distribution and guiding surgery/starvation/chemodynamic therapy. Notably, the starvation therapy mediated by GOx-driven oxidation reaction efficiently depletes intratumoral glucose, and supplies H2O2 to boost the CDT mediated by the Mn2+ and Cu2+, which consequently realized a highly effective synergistic treatment for NSCLC. Conclusion: This research demonstrates an efficient treatment paradigm for NSCLC with NIR-IIb fluorescence diganosis and image-guided synergistic surgery/starvation/chemodynamic therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Carcinoma de Pequenas Células do Pulmão , Inanição , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fluorescência , Peróxido de Hidrogênio , Neoplasias Pulmonares/tratamento farmacológico , Glucose Oxidase , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107602

RESUMO

Wheat production is often impacted by pre-winter freezing damage and cold spells in later spring. To study the influences of cold stress on wheat seedlings, unstressed Jing 841 was sampled once at the seedling stage, followed by 4 °C stress treatment for 30 days and once every 10 days. A total of 12,926 differentially expressed genes (DEGs) were identified from the transcriptome. K-means cluster analysis found a group of genes related to the glutamate metabolism pathway, and many genes belonging to the bHLH, MYB, NAC, WRKY, and ERF transcription factor families were highly expressed. Starch and sucrose metabolism, glutathione metabolism, and plant hormone signal transduction pathways were found. Weighted Gene Co-Expression Network Analysis (WGCNA) identified several key genes involved in the development of seedlings under cold stress. The cluster tree diagram showed seven different modules marked with different colors. The blue module had the highest correlation coefficient for the samples treated with cold stress for 30 days, and most genes in this module were rich in glutathione metabolism (ko00480). A total of eight DEGs were validated using quantitative real-time PCR. Overall, this study provides new insights into the physiological metabolic pathways and gene changes in a cold stress transcriptome, and it has a potential significance for improving freezing tolerance in wheat.


Assuntos
Resposta ao Choque Frio , Triticum , Resposta ao Choque Frio/genética , Triticum/genética , Triticum/metabolismo , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Glutationa/genética , Glutationa/metabolismo
16.
Front Mol Biosci ; 9: 890215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262473

RESUMO

Background: Pyroptosis, a newly discovered type of programmed cell death, has both anti-tumor and tumor-promoting effects on carcinogenesis. In hepatocellular carcinoma (HCC), however, the associations between pyroptosis-regulated genes and prognosis, immune microenvironment, and immunotherapy response remain unclear. Samples and methods: Sequencing data were collected from The Cancer Genome Atlas database, The International Cancer Genome Consortium (ICGC), and The Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB). First, we investigated the expression levels and copy number variations (CNVs) of 56 pyroptosis genes in HCC and pan-cancer. Next, we identified 614 genes related to 56 pyroptosis-associated genes at the expression, mutation, and CNVs levels. Pathway enrichment analysis of 614 genes in the Hallmark, KEGG, and Reactome databases yielded a total of 253 significant signaling pathways. The pyroptosis-regulated genes (PRGs) comprised 108 genes that were derived from the top 20 signaling pathways, of which 57 genes had prognostic value in HCC. The least absolute shrinkage and selection operator (LASSO) analysis was performed to screen for PRGs with prognostic values. Ultimately, we constructed a risk score model with seven PRGs to predict HCC prognosis and validated its predictive value in three independent HCC cohorts. Risk scores were used to illustrate receiver operating characteristic (ROC) curves predicting 1, 3, and 5-years overall survival (OS). Single-sample gene set enrichment analysis (ssGSEA), was performed to study 28 types of immune cells infiltrated in HCC. The relationship between the risk signature and six immune checkpoint genes and immunotherapy was analyzed. Results: A total of seven PRGs were obtained following multiple screening steps. The risk score model containing seven PRGs was found to correlate significantly with the HCC prognosis of the training group. In addition, we validated the risk score model in two additional HCC cohorts. The risk score significantly correlated with infiltrating immune cells (i. e. CD4+ T cells, etc.), ICB key molecules (i. e. HAVCR2, etc.), and ICB response. Conclusions: This study demonstrated a vital role of PRGs in predicting the prognosis and immunotherapy response of HCC patients. The risk model could pave the way for drugs targeting pyroptosis and immune checkpoints in HCC.

17.
Technol Cancer Res Treat ; 21: 15330338221142160, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36476013

RESUMO

With the improvement of medical technology, the quality of life and prognosis of patients with malignant tumors have been greatly improved, and surgical treatment strategies for patients with spinal metastatic tumors have received extensive attention. Traditional open surgery for spinal metastases has problems such as large trauma, slow recovery, and influence on subsequent systemic treatment. Minimally invasive spine surgery has similar clinical outcomes to traditional open surgery, but minimally invasive spine surgery is less invasive and has a shorter recovery time. Minimally invasive spine surgery was initially applied to non-neoplastic diseases such as spinal degeneration and trauma, and was gradually applied to the treatment of spinal metastatic tumors and spinal deformities. For patients with spinal metastases, a shorter recovery time is helpful for early postoperative radiotherapy, thereby achieving a more satisfactory tumor control effect. This review discusses the application of minimally invasive spine surgery in the treatment of spinal metastatic tumors from the concept, surgical purpose, indications, and surgical selection, so as to provide reference for clinical practice.


Assuntos
Qualidade de Vida , Neoplasias da Coluna Vertebral , Humanos , Neoplasias da Coluna Vertebral/radioterapia , Neoplasias da Coluna Vertebral/cirurgia
18.
RSC Adv ; 12(46): 30024-30029, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321105

RESUMO

A label-free aptasensor has been fabricated in order to detect adenosine triphosphate (ATP) using turn-on fluorescence DNA-Ag NCs. The fluorescence of the DNA-Ag NCs could increase remarkably with the addition of ATP mainly because ATP specifically interacts with its aptamer to change the microenvironment of the darkish DNA-Ag NCs located at one terminus or two termini due to the conformational alteration of the aptamer structure. The proposed sensor can detect ATP in a linear range of 6-27 mM with a good detection limit of 5.0 µM. Additionally, the proposed method succeeded in detecting ATP in fetal bovine serum.

19.
Adv Drug Deliv Rev ; 190: 114536, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36108792

RESUMO

Malignant brain tumors, a heterogeneous group of primary and metastatic neoplasms in the central nervous system (CNS), are notorious for their highly invasive and devastating characteristics, dismal prognosis and low survival rate. Recently, near-infrared (NIR) optical imaging modalities including fluorescence imaging (FLI) and photoacoustic imaging (PAI) have displayed bright prospect in innovation of brain tumor diagnoses, due to their merits, like noninvasiveness, high spatiotemporal resolution, good sensitivity and large penetration depth. Importantly, these imaging techniques have been widely used to vividly guide diverse brain tumor therapies in a real-time manner with high accuracy and efficiency. Herein, we provide a systematic summary of the state-of-the-art NIR contrast agents (CAs) for brain tumors single-modal imaging (e.g., FLI and PAI), dual-modal imaging (e.g., FLI/PAI, FLI/magnetic resonance imaging (MRI) and PAI/MRI) and triple-modal imaging (e.g., MRI/FLI/PAI and MRI/PAI/computed tomography (CT) imaging). In addition, we update the most recent progress on the NIR optical imaging-guided therapies, like single-modal (e.g., photothermal therapy (PTT), chemotherapy, surgery, photodynamic therapy (PDT), gene therapy and gas therapy), dual-modal (e.g., PTT/chemotherapy, PTT/surgery, PTT/PDT, PDT/chemotherapy, PTT/chemodynamic therapy (CDT) and PTT/gene therapy) and triple-modal (e.g., PTT/PDT/chemotherapy, PTT/PDT/surgery, PTT/PDT/gene therapy and PTT/gene/chemotherapy). Finally, we discuss the opportunities and challenges of the CAs and nanotheranostics for future clinic translation.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Fotoquimioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Meios de Contraste , Humanos , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fototerapia/métodos , Nanomedicina Teranóstica/métodos
20.
PeerJ ; 10: e13692, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36071827

RESUMO

Background: The presence of alveolar epithelial type II cells (AECIIs) is one of the most important causes of bronchopulmonary dysplasia (BPD). Exosomes from bone mesenchymal stem cells (BMSCs) can reduce hyperoxia-induced damage and provide better results in terms of alveolar and pulmonary vascularization parameters than BMSCs. Currently, intervention studies using BMSC-derived exosomes on the signaling pathways regulating proliferation and apoptosis of alveolar epithelial cells under the condition of BPD have not been reported. This study investigated the effects of rat BMSC-derived exosomes on the proliferation and apoptosis of hyperoxia-induced primary AECIIs in vitro. Methods: The isolated AECIIs were grouped as follows: normal control (21% oxygen), hyperoxia (85% oxygen), hyperoxia+exosome (20 µg/mL), hyperoxia+exosome+LY294002 (PI3K/Akt inhibitor, 20 µM), and hyperoxia+exosome+rapamycin (mTOR inhibitor, 5 nM). We used the PI3K/Akt inhibitor LY294002 and the mTOR inhibitor rapamycin to determine the roles of the PI3K/Akt and mTOR signaling pathways. The effects of BMSC-derived exosomes on AECII proliferation and apoptosis were assessed, respectively. Results: Decreased levels of the antiapoptotic protein Bcl-2, the cell proliferation protein Ki67, p-PI3K, p-Akt, and p-mTOR, as well as increased levels of AECII apoptosis and the proapoptotic protein Bax in the hyperoxia group were observed. Notably, Sprague Dawley rat BMSC-derived exosomes could reverse the effect of hyperoxia on AECII proliferation. However, the application of LY294002 and rapamycin inhibited the protective effects of BMSC-derived exosomes. Conclusion: Our findings revealed that BMSC-derived exosomes could regulate the expression of apoptosis-related proteins likely via the PI3K/Akt/mTOR signaling pathway, thereby preventing hyperoxia-induced AECII apoptosis.


Assuntos
Exossomos , Hiperóxia , Células-Tronco Mesenquimais , Ratos , Animais , Células Epiteliais Alveolares , Hiperóxia/metabolismo , Ratos Sprague-Dawley , Proteínas Proto-Oncogênicas c-akt/metabolismo , Exossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Serina-Treonina Quinases TOR/metabolismo , Oxigênio/metabolismo , Células-Tronco Mesenquimais/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa