Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Anal Chem ; 96(17): 6707-6714, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38631336

RESUMO

Molecular magnetic resonance imaging (mMRI) of biomarkers is essential for accurate cancer detection in precision medicine. However, the current clinically used contrast agents provide structural magnetic resonance imaging (sMRI) information only and rarely provide mMRI information. Here, a tumor-specific furin-catalyzed nanoprobe (NP) was reported for differential diagnosis of malignant breast cancers (BCs) in vivo. This NP with a compact structure of Fe3O4@Gd-DOTA NPs (FFG NPs) contains an "always-on" T2-weighted MR signal provided by the magnetic Fe3O4 core and a furin-catalyzed enhanced T1-weighted MR signal provided by the Gd-DOTA moiety. The FFG NPs were found to produce an activated T1 signal in the presence of furin catalysis and an "always-on" T2 signal, providing mMRI and sMRI information simultaneously. Ratiometric mMRI:sMRI intensity can be used for differential diagnosis of malignant BCs MDA-MB-231 and MCF-7, where the furin levels relatively differ. The proposed probe not only provides structural imaging but also enables real-time molecular differential visualization of BC through enzymatic activities of cancer tissues.


Assuntos
Neoplasias da Mama , Furina , Imageamento por Ressonância Magnética , Furina/metabolismo , Furina/análise , Humanos , Neoplasias da Mama/diagnóstico por imagem , Feminino , Diagnóstico Diferencial , Animais , Catálise , Camundongos , Meios de Contraste/química , Linhagem Celular Tumoral
2.
Small ; 19(16): e2207544, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36683226

RESUMO

The chemical generation of singlet oxygen (1 O2 ) by the MoO4 2- -catalyzed disproportionation of hydrogen peroxide (H2 O2 ) has been widely applied in numerous catalytic processes; however, such molybdate ions cannot be administered for redox-based cancer therapeutics. This work reports the albumin-mediated biomimetic synthesis of highly active molybdenum sulfide (denoted MoB) nanocatalysts that mediate the simultaneous generation of 1 O2 and superoxide anion (O2 •- ) from H2 O2 , which is relatively abundant in malignant tumors. The MoB-catalyzed reactive oxygen species (ROS) are able to activate the ferroptosis pathway and cause lipid peroxidation for efficient cancer therapy. Furthermore, for the first time, the catalytic activity of MoB is visualized in situ. Moreover, a catalytic imaging modality based on MoB is developed for specific imaging of inflammation diseases without background interference. Therefore, this study presents a biomimetic strategy toward Mo-based nanocatalysts for ROS-facilitated tumor ferroptosis and catalytic imaging.


Assuntos
Ferroptose , Neoplasias , Humanos , Biomimética , Catálise , Linhagem Celular Tumoral , Peróxido de Hidrogênio/metabolismo , Neoplasias/diagnóstico por imagem , Espécies Reativas de Oxigênio/metabolismo , Ânions/química , Ânions/metabolismo
3.
Mikrochim Acta ; 191(1): 38, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110824

RESUMO

The miniprotein binder TRI2-2 was employed as an antibody alternative to build a single antibody-coupled TRI2-2 based gold nanoparticle-based lateral flow immunoassay (AT-GLFIA) biosensor. The biosensor provides high specificity and affinity binding between TRI2-2 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) spike antigen receptor binding domain (S-RBD). It also enables rapid testing of wild-type (WT), B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), P.1 (Gamma), and B.1.1.529 (Omicron) SARS-CoV-2 S-RBD and is at least ~ 16-fold more sensitive than conventional antibody pair-based GLFIA (AP-GLFIA). Besides, we developed a wireless micro-electrochemical assay (WMECA) biosensor based on the TRI2-2, which demonstrates an excellent VOCs testing capability at the pg mL-1 level. Overall, our results demonstrate that integrating miniprotein binders into conventional immunoassay systems is a promising design for improving the testing capabilities of such systems without hard-to-obtain antibody pair, complex reporter design, laborious signal amplification strategies, or specific instrumentation.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , COVID-19/diagnóstico , Ouro , SARS-CoV-2/genética , Anticorpos
4.
Nano Lett ; 22(11): 4519-4527, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35583518

RESUMO

Depression is one of the most fatal mental diseases, and there is currently a lack of efficient drugs for the treatment of depression. Emerging evidence has indicated oxidative stress as a key pathological feature of depression. We targeted reactive oxygen species (ROS) and synthesized CeO2@BSA nanoclusters as a novel antidepression nanodrug via a convenient, green, and highly effective bovine serum albumin (BSA) incubation strategy. CeO2@BSA has ultrasmall size (2 nm) with outstanding ROS scavenging and blood-brain barrier crossing capacity, rapid metabolism, and negligible adverse effects in vitro and in vivo. CeO2@BSA administration alleviates depressive behaviors and depression-related pathological changes of the chronic restraint stress-induced depressive model, suggesting promising therapeutic effects of CeO2@BSA for the treatment of depression. Our study proved the validity by directly using nanodrugs as antidepression drugs instead of using them as a nanocarrier, which greatly expands the application of nanomaterials in depression treatment.


Assuntos
Nanoestruturas , Soroalbumina Bovina , Depressão/tratamento farmacológico , Nanoestruturas/uso terapêutico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
5.
Small ; 18(31): e2202921, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801484

RESUMO

Sonosensitizers-assisted sonodynamic therapy (SDT) has been emerging as a promising treatment for cancers, and yet few specific regulations of band structure of sonosensitizers have been reported in relation to oxygen in tissues. Herein, by a gradient doping technique to modulate the band structure of hetero-semiconductor nanorods, it is found that the reduction potential of band-edge is very critical to reactive oxygen species (ROS) production under low-intensity ultrasound (US) irradiation and particularly, when aligned with the reduction of oxygen, ROS generation is found to be most significantly enhanced. Withal, US-generated oxidation holes are found to be effective in consuming overexpressed glutathione in tumor lesions, which amplifies cellular oxidative stress and finally induces tumor cell death. Moreover, the intrinsic fluorescence property of semiconductors provides imaging capability to illumine tumor area and guide the SDT process. This study demonstrates that the reduction potential state of sonosensitizers is of crucial importance in ROS generation and the proposed reduction potential-tailored hetero-semiconductor nanorods materialize low-intensity US irradiation yet highly effective SDT and synergetic hole therapy of tumors with imaging guidance and reduced radiation injury.


Assuntos
Nanotubos , Neoplasias , Terapia por Ultrassom , Linhagem Celular Tumoral , Humanos , Neoplasias/terapia , Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Semicondutores , Terapia por Ultrassom/métodos
6.
Small ; 18(9): e2104550, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34910856

RESUMO

Excess generation of reactive oxygen species (ROS) based on sensitizers under ultrasound (US) excitation can cause the death of tumor cells via oxidative damage, but sonosensitizers are largely unexplored. Herein, oxygen-deficient black BiOCl (B-BiOCl) nanoplates (NPs) are reported, with post-treatment on conventional BiOCl by simple UV excitation, showing stronger singlet oxygen (1 O2 ) generation than commercial TiO2 nanoparticles and their derivatives under US irradiation. Moreover, L-buthionine-sulfoximine (BSO), a GSH biosynthesis inhibitor, is incorporated into B-BiOCl NPs. The authors find that BSO can be released owing to the degradation of B-BiOCl NPs in the presence of acid and GSH, which are overexpressed in tumors. The results show that BSO/B-BiOCl-PEG NPs have a multifunctional synergistic effect on improving ROS production. In particular, BiOCl has remarkable near-infrared light absorption after UV treatment and is good for photoacoustic imaging that can guide subsequent sonodynamic therapy. This work shows that just with a simple oxygen deficiency treatment, strong 1 O2 generation can be provided to a conventional material under US irradiation and, interestingly, this effect can be amplified by using a small inhibitor BSO, and this is clearly demonstrated in cell and mice experiments.


Assuntos
Glutationa , Oxigênio Singlete , Animais , Glutationa/metabolismo , Hipóxia , Metionina/análogos & derivados , Camundongos , Oxigênio , Espécies Reativas de Oxigênio/metabolismo
7.
J Nanobiotechnology ; 20(1): 299, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752849

RESUMO

Traumatic brain injury (TBI) is a cause of disability and death worldwide, but there are currently no specific treatments for this condition. Release of excess reactive oxygen species (ROS) in the injured brain leads to a series of pathological changes; thus, eliminating ROS could be a potential therapeutic strategy. Herein, we synthesized insulin-incubated ultrasmall palladium (Pd@insulin) clusters via green biomimetic chemistry. The Pd@insulin clusters, which were 3.2 nm in diameter, exhibited marked multiple ROS-scavenging ability testified by the theoretical calculation. Pd@insulin could be rapidly excreted via kidney-urine metabolism and induce negligible adverse effects after a long-time treatment in vivo. In a TBI mouse model, intravenously injected Pd@insulin clusters aggregated in the injured cortex, effectively suppressed excessive ROS production, and significantly rescued motor function, cognition and spatial memory. We found that the positive therapeutic effects of the Pd@insulin clusters were mainly attributed to their ROS-scavenging ability, as they inhibited excessive neuroinflammation, reduced cell apoptosis, and prevented neuronal loss. Therefore, the ability of Pd@insulin clusters to effectively eliminate ROS, as well as their simple structure, easy synthesis, low toxicity, and rapid metabolism may facilitate their clinical translation for TBI treatment.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Animais , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Insulina , Camundongos , Paládio/farmacologia , Paládio/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
8.
Mikrochim Acta ; 186(2): 89, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631952

RESUMO

A fluorometric and magnetic resonance (MR) dual-modal detection scheme is presented for determination of ascorbic acid (AA). It is based on the use of a blended Au/MnO2@BSA mixture that was prepared via a biomimetic strategy, using bovine serum albumin (BSA) as the template at physiological temperature. The MnO2@BSA fraction (one part of the composite) is not susceptible to MR but can be degraded to MR-active compounds upon a redox reaction with even ultralow concentrations of AA. In parallel, the blended Au/MnO2@BSA recovers its fluorescence because MnO2@BSA acts as a quencher of the fluorescence of circumjacent Au@BSA (the other part of the composite). Fluorescence typically is measured at excitation/emission wavelengths of 470/625 nm. Leveraging on this redox reaction between MnO2 and AA, a dual-mode detection scheme for AA was developed. Both the fluorescence and the MR signal increase with the concentration of AA. The lowest limit for the detection of AA is 0.6 µM in the fluorometric mode and 0.4 µM in the MR mode. Analysis of AA-spiked serum samples showed that the recoveries obtained by either the fluorometric and MR mode can reach 94%. This is the first report of the use of blended nanoparticles with their inherent cross-validation regularity. Graphical abstract Schematic presentation of the biomimetic synthesis of blended Au/MnO2@BSA nanoprobes and fluorometric/MR cross-validation dual-modal detection of ascorbic acid.

9.
Nano Lett ; 17(11): 6916-6921, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29019240

RESUMO

Structurally controlled nanoparticles, such as core-shell nanocomposite particles by combining two or more compositions, possess enhanced or new functionalities that benefited from the synergistic coupling of the two components. Here we report new nanocomposite particles with self-assembled porphyrin arrays as the core surrounded by amorphous silica as the shell. The synthesis of such nanocomposite nanoparticles was conducted through a combined surfactant micelle confined self-assembly and silicate sol-gel process using optically active porphyrin as a functional building block. Depending on kinetic conditions, these particles exhibit structure and function at multiple length scales and locations. At the molecular scale, the porphyrins as the building blocks provide well-defined macromolecular structures for noncovalent self-assembly and unique chemistry for high-yield generation of singlet oxygen for photodynamic therapy (PDT). On the nanoscale, controlled noncovalent interactions of the porphyrin building block result in an extensive self-assembled porphyrin network that enables efficient energy transfer and impressive fluorescence for cell labeling, evidenced by absorption and photoluminescence spectra. Finally, the thin silicate shell on the nanoparticle surface allows easy functionalization, and the resultant targeting porphyrin-silica nanocomposites can selectively destroy tumor cells upon receiving light irradiation.


Assuntos
Preparações de Ação Retardada/química , Metaloporfirinas/administração & dosagem , Nanocompostos/química , Fármacos Fotossensibilizantes/administração & dosagem , Dióxido de Silício/química , Transferência de Energia , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Metaloporfirinas/química , Metaloporfirinas/farmacologia , Nanocompostos/ultraestrutura , Nanopartículas/química , Nanopartículas/ultraestrutura , Neoplasias/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/química
10.
Bioconjug Chem ; 28(2): 330-335, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28085270

RESUMO

Various biomimetic nanoparticles have been fabricated for cancer nanotheranostics with a diverse range of proteins. However, the operating mechanisms of these reactions are still unclear, especially on the interaction between metal ions and protein, the precise binding sites, and the existence format of nanoparticles. Assuming the shortening of the amino acids sequence into several, namely short peptides, it would be much easier to investigate the biomimetic reaction mechanism. In this study, a modular peptide, possessing Au3+ ion coordination motifs and a Gd3+ ion chelation sequence, is designed and synthesized. This peptide is experimentally found effective in site-specific biomimetic synthesis of paramagnetic fluorescent gold nanoclusters (pAuNCs) with a quantum yield of 6.8%, deep red emission at 676 nm, and potent relaxivity. The gel electrophoresis result declares that the two imaging motifs in pAuNCs are quite stable. In vivo fluorescence-magnetic resonance bimodal imaging show significant tumor enhancement by pAuNCs in tumor-bearing mice. In vivo biodistribution and toxicity studies reveal that pAuNCs can be gradually cleared from the body without damage. This study presents a modular peptide that can incubate multifunctional nanoparticles in a biomimetic fashion and hopefully provides a strategy for the investigation of the mechanism of protein-mediated biomimetic synthesis.


Assuntos
Biomimética , Meios de Contraste/química , Imagem Molecular/métodos , Peptídeos/química , Animais , Gadolínio/química , Ouro/química , Células HeLa , Humanos , Nanopartículas Metálicas/química , Camundongos , Modelos Moleculares , Conformação Molecular , Peptídeos/farmacocinética , Distribuição Tecidual
11.
Langmuir ; 32(4): 1155-65, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26740341

RESUMO

Gd(3+)-ion-doped upconversion nanoparticles (UCNPs), integrating the advantages of upconversion luminescence and magnetic resonance imaging (MRI) modalities, are capturing increasing attention because they are promising to improve the accuracy of diagnosis. The embedded Gd(3+) ions in UCNPs, however, have an indistinct MRI enhancement owing to the inefficient exchange of magnetic fields with the surrounding water protons. In this study, a novel approach is developed to improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. Bovine serum albumin (BSA) bundled with DTPA-Gd(3+) (DTPA(Gd)) is synthesized both as the MR imaging sensitivity synergist and phase-transfer ligand for the surface engineering of UCNPs. The external Gd(3+) ion attachment strategy is found to significant improve the MR imaging sensitivity of Gd(3+)-ion-doped UCNPs. The relaxivity analysis shows that UCNPs@BSA·DTPA(Gd) exhibit higher relaxivity values than do UCNPs@BSA without DTPA(Gd) moieties. Another relaxivity study discloses a striking message that the relaxivity value does not always reflect the realistic MRI enhancement capability. The high concentration of Gd(3+)-ion-containing UCNPs with further surface-engineered BSA·DTPA(Gd) (denoted as UCNPs-H@BSA·DTPA(Gd)) exhibits a more pronounced MRI enhancement capability compared to the other two counterparts [UCNPs-N@BSA·DTPA(Gd) and UCNPs-L@BSA·DTPA(Gd) (-N and -L are denoted as zero and low concentrations of Gd(3+) ion doping, respectively)], even though it holds the lowest r1 of 1.56 s(-1) per mmol L(-1) of Gd(3+). The physicochemical properties of UCNPs are essentially maintained after BSA·DTPA(Gd) surface decoration with good colloidal stability, in addition to improving the MR imaging sensitivity. In vivo T1-weighted MRI shows potent tumor-enhanced MRI with UCNPs-H@BSA·DTPA(Gd). An in vivo biodistribution study indicates that it is gradually excreted from the body via hepatobiliary and renal processing with no obvious toxicity. It could therefore be concluded, with improved MR imaging sensitivity by an internal and external incorporation of Gd(3+) strategy, that UCNPs-H@BSA·DTPA(Gd) presents great potential as an alternative in tumor-targeted MR imaging.


Assuntos
Gadolínio/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Compostos Organometálicos/química , Animais , Bovinos , Células HeLa , Humanos , Rim/fisiologia , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/toxicidade
12.
Nanotechnology ; 27(16): 165101, 2016 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-26941226

RESUMO

Multifunctional superparamagnetic iron-oxide (SPIO)-based nanoparticles have been emerging as candidate nanosystems for cancer diagnosis and therapy. Here, we report the use of reduction- responsive SPIO/doxorubicin (DOX)-loaded poly(ethylene glycol) monomethyl ether (PEG)ylated polymeric lipid vesicles (SPIO&DOX-PPLVs) as a novel theranostic system for tumor magnetic resonance imaging (MRI) diagnosis and controlled drug delivery. These SPIO&DOX-PPLVs are composed of SPIOs that function as MR contrast agents for tumor enhancement and PPLVs as polymer matrices for encapsulating SPIO and antitumor drugs. The in vitro characterizations show that the SPIO&DOX-PPLVs have nanosized structures (∼80 nm), excellent colloidal stability, good biocompatibility, as well as T2-weighted MRI capability with a relatively high T2 relaxivity (r2 = 213.82 mM(-1) s(-1)). In vitro drug release studies reveal that the release rate of DOX from the SPIO&DOX-PPLVs is accelerated in the reduction environment. An in vitro cellular uptake study and an antitumor study show that the SPIO&DOX-PPLVs have magnetic targeting properties and effective antitumor activity. In vivo studies show the SPIO&DOX-PPLVs have excellent T2-weighted tumor targeted MRI capability, image-guided drug delivery capability, and high antitumor effects. These results suggest that the SPIO&DOX-PPLVs are promising nanocarriers for MRI diagnosis and cancer therapy applications.


Assuntos
Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/uso terapêutico , Polietilenoglicóis/química , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Feminino , Compostos Férricos/química , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Camundongos , Resultado do Tratamento , Neoplasias do Colo do Útero/diagnóstico por imagem , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biosens Bioelectron ; 254: 116195, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38479341

RESUMO

The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , Nanopartículas Metálicas/química , Transferência Ressonante de Energia de Fluorescência , Biomarcadores
14.
Nanotechnology ; 24(17): 175101, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23558298

RESUMO

Multi-modal imaging based on multifunctional nanoparticles is a promising alternative approach to improve the sensitivity of early cancer diagnosis. In this study, highly upconverting fluorescence and strong relaxivity rare-earth nanoparticles coated with paramagnetic lanthanide complex shells and polyethylene glycol (PEGylated UCNPs@DTPA-Gd(3+)) are synthesized as dual-modality imaging contrast agents (CAs) for upconverting fluorescent and magnetic resonance dual-modality imaging. PEGylated UCNPs@DTPA-Gd(3+) with sizes in the range of 32-86 nm are colloidally stable. They exhibit higher longitudinal relaxivity and transverse relaxivity in water (r1 and r2 values are 7.4 and 27.8 s(-1) per mM Gd(3+), respectively) than does commercial Gd-DTPA (r1 and r2 values of 3.7 and 4.6 s(-1) per mM Gd(3+), respectively). They are found to be biocompatible. In vitro cancer cell imaging shows good imaging contrast of PEGylated UCNPs@DTPA-Gd(3+). In vivo upconversion fluorescent imaging and T1-weighted MRI show excellent enhancement of both fluorescent and MR signals in the livers of mice administered PEGylated UCNPs@DTPA-Gd(3+). All the experimental results indicate that the synthesized PEGylated UCNPs@DTPA-Gd(3+) present great potential for biomedical upconversion of fluorescent and magnetic resonance dual-modality imaging applications.


Assuntos
Meios de Contraste , Gadolínio DTPA , Elementos da Série dos Lantanídeos , Imageamento por Ressonância Magnética/métodos , Nanopartículas , Neoplasias/diagnóstico , Imagem Óptica/métodos , Animais , Meios de Contraste/química , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Gadolínio DTPA/química , Células HeLa , Humanos , Elementos da Série dos Lantanídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/ultraestrutura , Polietilenoglicóis/química
15.
Biomaterials ; 292: 121920, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442436

RESUMO

Despite the success of immune checkpoint blockade (ICB) therapy in cancer management, ICB-based immunotherapy of triple-negative breast cancer (TNBC) still suffers from immunosuppressive tumor microenvironment (ITM). To break through the bottleneck of TNBC immunotherapy, a self-cascaded unimolecular prodrug consisting of an acidic pH-activatable doxorubicin and an aggregation-induced emission luminogen (AIEgen) photosensitizer coupled to a caspase-3-responsive peptide was engineered. The generated prodrug, could not only release doxorubicin initiatively in acidic tumor microenvironment, but also activate apoptosis-related caspase-3. The activated caspase-3 could in turn trigger release and in situ aggregation of photosensitizers. Importantly, the unimolecular prodrug exhibits a renal clearance pathway similar to small molecules in vivo, while the aggregated AIEgens prolong tumor retention for long-term fluorescence imaging and repeatable photodynamic therapy (PDT) by only one single-dose injection. Furthermore, the tumor-detained PDT boosts both immunogenic cell death of TNBC cells and maturation of dendritic cells. Finally, the combination of repeatable PDT with ICB therapy further promotes the proliferation and intratumoral infiltration of cytotoxic T lymphocytes, and effectively suppresses tumor growth and pulmonary metastasis. This prodrug is a proof-of-concept that confirms the first self-cascaded chemo-PDT strategy to reverse the ITM and boost the ICB-mediated TNBC immunotherapy.


Assuntos
Nanopartículas , Fotoquimioterapia , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Humanos , Pró-Fármacos/uso terapêutico , Pró-Fármacos/química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Caspase 3 , Imunoterapia/métodos , Fármacos Fotossensibilizantes/química , Microambiente Tumoral , Doxorrubicina/farmacologia , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Nanopartículas/química
16.
Biosens Bioelectron ; 220: 114880, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36402100

RESUMO

Quantum Dots (QDs) have been demonstrated with outstanding optical properties and thus been widely used in many biological and biomedical studies. However, previous studies have shown that QDs can cause cell toxicity, mainly attributable to the leached Cd2+. Therefore, identifying the leaching kinetics is very important to understand QD biosafety and cytotoxicity. Toward this goal, instrumental analyses such as inductively coupled plasma mass spectrometry (ICP-MS) have been used, which are time-consuming, costly and do not provide real-time or spatial information. To overcome these limitations, we report herein a fast and cost-effective fluorescence sensor based a Cd2+-specific aptamer for real-time monitoring the rapid leaching kinetics of QDs in vitro and in living cells. The sensor shows high specificity towards Cd2+ and is able to measure the Cd2+ leached either from water-dispersed CdTe QDs or two-layered CdSe/CdS QDs. The sensor is then used to study the stability of these two types of QDs under conditions to mimic cellular pH and temperature and the results from the sensor are similar to those obtained from ICP-MS. Finally, the sensor is able to monitor the leaching of Cd2+ from QDs in HeLa cells. The fluorescence aptamer sensor described in this study may find many applications as a tool for understanding biosafety of numerous other Cd-based QDs, including leaching kinetics and toxicity mechanisms in living systems.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Pontos Quânticos , Humanos , Cádmio/toxicidade , Células HeLa , Telúrio , Oligonucleotídeos
17.
APL Bioeng ; 7(1): 016115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36974040

RESUMO

The development of a combination of chemo/photothermal therapy could overcome the limitations of single-modality therapy and enhance therapeutic efficacy. In this study, a pH/thermal dual-responsive multifunctional drug delivery system with dual-drug loading and enhanced chemo/photothermal therapy is developed based on polydopamine-coated mesoporous silica-gold nanorods (PDA-AuNRs@MSN). Nanoscale mesoporous silica-gold nanorods encapsulating doxorubicin (DOX) are designed as a core and then modified by polydopamine. The PDA shell not only conjugates with another anticancer bortezomib (Btz) to form pH-sensitive bond through boronic acid and catechol but also acts as a gatekeeper to control the release of doxorubicin and enhance the photothermal effect. Such a nanocarrier not only acts as a contrast agent for PA imaging but also serves as a therapeutic agent for enhanced chemo/photothermal therapy. The DOX and Btz could be released in an on-demand mode under near-infrared light irradiation and acid environment. The tumor size and location could be observed via PA imaging after intravenous injection into 4T1-bearing mice. Compared with AuNRs@MSN, PDA-AuNRs@MSN exhibit an increased near-infrared (NIR) absorption at 808 nm and an enhanced photothermal effect. The integrated D/B-PDA-AuNRs@MSN nanoparticles show higher cell apoptosis and enhanced tumor treatment efficacy in vitro and in vivo in comparison with single chemotherapy or photothermal therapy. Combined together, D/B-PDA-AuNRs@MSN show pH/thermal-responsive controlled-release and synergistic chemo/photothermal therapy for tumor.

18.
ACS Nano ; 17(4): 4009-4022, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36757738

RESUMO

Enhanced imaging techniques using contrast agents enable high-resolution structural imaging to reveal space-occupying lesions but rarely provide detailed molecular information. To this end, we report a structural and molecular fusion magnetic resonance imaging (MRI) nanoprobe for differential diagnosis between benign and malignant tumors. This fusion nanoprobe, termed FFT NPs, follows a working mechanism involving a T1-/T2-weighted magnetic resonance tuning effect (MRET) between a magnetic Fe3O4 core and a paramagnetic Fe-tannic acid (Fe-TA) shell. The FFT NPs with an "always-on" inert T2 signal provide structural MRI (sMRI) contrast of tumors while affording an activated T1 signal in the presence of ATP, which is overproduced during the rapid growth of malignant tumors to enable molecular MRI (mMRI) of tumor lesions. We propose the use of the ratiometric mMRI:sMRI intensity to assist in the differential diagnosis of malignant 4T1 tumors from benign L929 fibroblast tumors. Furthermore, the dissociated FFT NPs were found to be able to catalyze H2O2 conversion in 4T1 tumors to generate excess reactive oxygen species (ROS) for chemodynamic therapy. The described fusion nanoprobe strategy enables the differential diagnosis of tumors from a combined spatial and molecular perspective with one-stop MRI imaging with potential applications in precision intervention.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Humanos , Diagnóstico Diferencial , Seguimentos , Imageamento por Ressonância Magnética/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Meios de Contraste/química
19.
Langmuir ; 28(48): 16605-13, 2012 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-23145555

RESUMO

Quantum dots (QDs) have been widely used as fluorescent probes in cell-targeted imaging. However, nonspecific binding to cellular membranes has been a major challenge. In this study, a new approach is developed for effective reduction of nonspecific binding by bovine serum albumin (BSA)-coated QDs in cell targeting. The experimental results show efficient transfer of hydrophobic QDs from organic to aqueous phase in the presence of BSA aqueous solution under ultrasonication. This ultrasonication-based approach is facile, rapid, and efficient. Stabilization of QDs is mainly achieved by multiple mercapto groups in BSA macromolecules as multidentate ligands and partially by hydrophobic interaction between BSA and pending fatty ligands on QDs. The water solubility of QDs is enhanced by the surface amino and carboxyl groups, which also provide reaction sites for conjugation of targeting ligands. The BSA-coated QDs, with an overwhelming majority of hydrodynamic diameter size of ca. 18 nm, are colloidally stable under both acidic and basic conditions and found to exhibit strong fluorescent intensities. The nonspecific cellular binding is effectively reduced by BSA-coated QDs, compared with the mercaptopropionic acid (MPA)-coated CdTe QDs. BSA-coated QDs are further functionalized with cyclic Arg-Gly-Asp (cRGD) peptide. The cell assays indicate their high target-selectivity in integrin α(v)ß(3)-expressed cell imaging.


Assuntos
Engenharia , Imagem Molecular/métodos , Pontos Quânticos , Soroalbumina Bovina/metabolismo , Animais , Bovinos , Linhagem Celular Tumoral , Humanos , Camundongos , Peptídeos Cíclicos/metabolismo , Estabilidade Proteica , Soroalbumina Bovina/química , Especificidade por Substrato , Propriedades de Superfície
20.
Biomacromolecules ; 13(11): 3723-9, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23016499

RESUMO

Substrate mechanical properties have remarkable influences on cell behavior and tissue regeneration. Although salt-leached silk scaffolds have been used in tissue engineering, applications in softer tissue regeneration can be encumbered with excessive stiffness. In the present study, silk-bound water interactions were regulated by controlling processing to allow the preparation of salt-leached porous scaffolds with tunable mechanical properties. Increasing silk-bound water interactions resulted in reduced silk II (ß-sheet crystal) formation during salt-leaching, which resulted in a modulus decrease in the scaffolds. The microstructures as well as degradation behavior were also changed, implying that this water control and salt-leaching approach can be used to achieve tunable mechanical properties. Considering the utility of silk in various fields of biomedicine, the results point to a new approach to generate silk scaffolds with controllable properties to better mimic soft tissues by combining scaffold preparation methods and silk self-assembly in aqueous solutions.


Assuntos
Materiais Biocompatíveis/química , Seda/química , Engenharia Tecidual , Alicerces Teciduais , Animais , Bombyx , Cloreto de Sódio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa