Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36987360

RESUMO

High-energy low-sensitivity explosives are research objectives in the field of energetic materials, and the formation of cocrystals is an important method to improve the safety of explosives. However, the sensitivity reduction mechanism of cocrystal explosives is still unclear. In this study, CL-20/TNT, CL-20 and TNT crystals were taken as research objects. On the basis of the ReaxFF-lg reactive force field, the propagation process of the wave front in the crystals at different impact velocities was simulated. The molecular dynamics data were used to analyze the molecular structure changes and initial chemical reactions, and to explore the sensitivity reduction mechanism of the CL-20/TNT cocrystal. The results showed that the chemical reaction of the CL-20/TNT cocrystal, compared with the CL-20 single crystal, is different under different impact velocities. At an impact velocity of 2 km/s, polymerization and separation of the component molecules weakened the decomposition of CL-20. At an impact velocity of 3 km/s, the decay rates of CL-20 and TNT in the cocrystal decreased, and the intermediate products were enhanced, such as nitrogen oxides. At an impact velocity of 4 km/s, the cocrystal had little effect on the decay rates of the molecules and formation of CO2, but it enhanced formation of N2 and H2O. This may explain the reason for the impact-sensitivity reduction of the CL-20/TNT cocrystal.

2.
Polymers (Basel) ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299237

RESUMO

Density functional theory (DFT) is employed to investigate the promotion of B(C6F5)3 as a ligand for titanium (or vanadium) catalysts in ethylene/1-hexene copolymerization reactions. The results reveal that (I) Ethylene insertion into TiB (with B(C6F5)3 as a ligand ) is preferred over TiH, both thermodynamically and kinetically. (II) In TiH and TiB catalysts, the 2,1 insertion reaction (TiH21 and TiB21) is the primary pathway for 1-hexene insertion. Furthermore, the 1-hexene insertion reaction for TiB21 is favored over TiH21 and is easier to perform. Consequently, the entire ethylene and 1-hexene insertion reaction proceeds smoothly using the TiB catalyst to yield the final product. (III) Analogous to the Ti catalyst case, VB (with B(C6F5)3 as a ligand) is preferred over VH for the entire ethylene/1-hexene copolymerization reaction. Moreover, VB exhibits higher reaction activity than TiB, thus agreeing with experimental results. Additionally, the electron localization function and global reactivity index analysis indicate that titanium (or vanadium) catalysts with B(C6F5)3 as a ligand exhibit higher reactivity. Investigating the promotion of B(C6F5)3 as a ligand for titanium (or vanadium) catalysts in ethylene/1-hexene copolymerization reactions will aid in designing novel catalysts and lead to more cost-effective polymerization production methods.

3.
Polymers (Basel) ; 14(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501667

RESUMO

Density functional theory has been used to elucidate the mechanism of Pd copolymerization of cyclopropenone with ethylene. The results reveal that introducing ethylene and cyclopropenone to Pd catalyst is thermodynamically feasible and generates the α,ß-unsaturated ketone unit (UnitA). Cis-mode insertion and Path A1a are the most favorable reaction routes for ethylene and cyclopropenone, respectively. Moreover, cyclopropenone decomposition can generate CO in situ without a catalyst or with a Pd catalyst. The Pd-catalyzed decomposition of cyclopropenone exhibits a lower reaction barrier (22.7 kcal/mol) than its direct decomposition. Our study demonstrates that incorporating CO into the Pd catalyst can generate the isolated ketone unit (UnitB). CO is formed first; thereafter, UnitB is generated. Therefore, the total energy barrier of UnitB generation, accounting for the CO barrier, is 22.7 kcal/mol, which is slightly lower than that of UnitA generation (24.0 kcal/mol). Additionally, the possibility of copolymerizing ethylene, cyclopropenone, and allyl acetate (AAc) has been investigated. The free energy and global reactivity index analyses indicate that the cyclopropenone introduction reaction is more favorable than the AAc insertion, which is consistent with the experimental results. Investigating the copolymerization mechanism will help to develop of a functionalization strategy for polyethylene polymers.

4.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500798

RESUMO

Complex asymmetric synthesis can be realized by the chiral induction of amino acids in nature. It is of great significance to design a new biomimetic catalytic system for asymmetric synthesis. In this context, we report the preparation and characterization of the composite of polyacrylonitrile fiber (PANF) and metal-organic framework to catalyze the chiral synthesis of propargylamines. A confined microenvironment is established with N-heterocyclic carbene (NHC) silver complex-supported PANF and D-proline-encapsulated MIL-101(Cr). This novel supported catalyst demonstrated high activity in addition to excellent stereoselectivity in the three-component reaction between alkynes, aldehydes, and amines (A3). The regeneration can be realized by adsorption of D-proline again when the stereoselectivity decreases after recycle uses. By regulating the confined microenvironment on the composite, the activity and selectivity of the catalytic system are improved with turnover numbers of up to 2800 and 98% ee. The biomimetic catalytic system to A3 coupling reaction is systematically studied, and the synergistic catalytic mechanism between NHC-Ag and D-proline in the confined microenvironment is revealed.

5.
Inorg Chem ; 50(8): 3816-25, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21413735

RESUMO

The mechanistic details of nickel-catalyzed reduction of CO(2) with catecholborane (HBcat) have been studied by DFT calculations. The nickel pincer hydride complex ({2,6-C(6)H(3)(OP(t)Bu(2))(2)}NiH = [Ni]H) has been shown to catalyze the sequential reduction from CO(2) to HCOOBcat, then to CH(2)O, and finally to CH(3)OBcat. Each process is accomplished by a two-step sequence at the nickel center: the insertion of a C═O bond into [Ni]H, followed by the reaction of the insertion product with HBcat. Calculations have predicted the difficulties of observing the possible intermediates such as [Ni]OCH(2)OBcat, [Ni]OBcat, and [Ni]OCH(3), based on the low kinetic barriers and favorable thermodynamics for the decomposition of [Ni]OCH(2)OBcat, as well as the reactions of [Ni]OBcat and [Ni]OCH(3) with HBcat. Compared to the uncatalyzed reactions of HBcat with CO(2), HCOOBcat, and CH(2)O, the nickel hydride catalyst accelerates the H(δ-) transfer by lowering the barriers by 30.1, 12.4, and 19.6 kcal/mol, respectively. In general, the catalytic role of the nickel hydride is similar to that of N-heterocyclic carbene (NHC) catalyst in the hydrosilylation of CO(2). However, the H(δ-) transfer mechanisms used by the two catalysts are completely different. The H(δ-) transfer catalyzed by [Ni]H can be described as hydrogen being shuttled from HBcat to nickel center and then to the C═O bond, and the catalyst changes its integrity during catalysis. In contrast, the NHC catalyst simply exerts an electronic influence to activate either the silane or CO(2), and the integrity of the catalyst remains intact throughout the catalytic cycle. The comparison between [Ni]H and Cp(2)Zr(H)Cl in the stoichiometric reduction of CO(2) has suggested that ligand sterics and metal electronic properties play critical roles in controlling the outcome of the reaction. A bridging methylene diolate complex has been previously observed in the zirconium system, whereas the analogous [Ni]OCH(2)O[Ni] is not a viable intermediate, both kinetically and thermodynamically. Replacing HBcat with PhSiH(3) in the nickel-catalyzed reduction of CO(2) results in a high kinetic barrier for the reaction of [Ni]OOCH with PhSiH(3). Switching silanes to HBcat in NHC-catalyzed reduction of CO(2) generates a very stable NHC adduct of HCOOBcat, which makes the release of NHC less favorable.

6.
Chemistry ; 15(24): 5910-9, 2009 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-19472230

RESUMO

Based on the Wade-Mingos n+1 rule for the closo-boranes (B(n)H(n) (2-)), a family of Ti-substituted closo-boranes has been designed computationally. Due to the isolobal relation of Ti to a BH(2-) group, these Ti-substituted boranes have n+1 pairs of skeletal electrons to fulfill the bonding requirement for such stable cages. The reported representatives, B(4)H(4)Ti(2)H(2) in particular, not only have stable electronic structures but also superior capability to adsorb hydrogen. The optimal binding energies and high gravimetric densities of hydrogen storage indicate their potential to store hydrogen for practical applications. Simultaneously achieving electronic stability and optimal hydrogen uptake may provide a way of overcoming the issue of aggregation in designing transition-metal-decorated hydrogen storage materials. This study invites experimental realization of novel boranes and provides new ideas for searching for hydrogen storage materials.

7.
Dalton Trans ; 40(9): 1929-37, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21258736

RESUMO

This study extends our previous work of using π-FLP strategy to develop metal-free hydrogenation catalysts. Using small MeN=CMe(2) imine (im1) as a model, we previously designed cat1 and cat2 catalysts. But it is unclear whether they are capable of catalyzing the hydrogenations of bulky imines. Using tBuN=C(H)Ph (im2) as a representative of large imines, we assessed the energetics of the cat1- and cat2-catalyzed im2 hydrogenations. The predicted energetics indicates that they can still catalyze large imine hydrogenations with experimentally accessible kinetic barriers, although the energetics becomes less favorable. To improve the catalysis, we proposed new catalysts (cat3 and cat4) by tailoring cat1 and cat2. The study indicates that cat3 and cat4 could have better performance for the hydrogenation of the bulky im2 than cat1 and cat2. Remarkably, cat3 and cat4 are also found suitable for small imine (im1) hydrogenation. Examining the hydrogen transfer substeps in the eight hydrogenations involved in this study, we observed that the mechanism for the hydrogen transfer step in the catalytic cycles depends on the steric effect between catalyst and substrate. The mechanism can be switched from stepwise one in the case of large steric effect (e.g.im2/cat2) to the concerted one in the case of small steric effect (e.g.im1/cat3). The new catalysts could be better targets for experimental realization because of their simpler constructions.

8.
Inorg Chem ; 47(4): 1332-6, 2008 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-18205302

RESUMO

Planar tetracoordinate carbon (ptC) arrangements can be achieved by employing multiple substituents based on beryllium, despite its rather weak pi-acceptor ability. A variety of ptC-containing examples, some with more than one ptC, have been designed computationally by elaborating the planar C(BeH) 4 (2-) prototype at B3LYP/6-311++G(3df,2p) and MP2/6-311++G(3df,2p) levels of theory for some small ptC representatives. The prototype prefers a D(2h) paramagnetic triplet ground state due to Hund's rule, rather than a singlet. The highly polarized C-Be bonding weakens the rigidity of the tetrahedral carbon in T(d)C(BeH) 4 enormously, and the enhancement of both C-Be and Be 4 peripheral covalent bonding exerted by the extra electrons stabilizes the ptC eventually. The delocalization of the two p pi electrons is only modest, but their density on the most electronegative carbon atom helps stabilize the ptC arrangement. This is in contrast to the conventional strategy to delocalize p(pi) lone pairs for stabilizing the ptC arrangement. Various strategies to achieve neutral derivatives with ptCs are demonstrated.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa