Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(20): 6002-6009, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739273

RESUMO

Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.

2.
Inorg Chem ; 63(5): 2616-2626, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38267376

RESUMO

Layered materials have attracted extensive attention due to their exceptional physical and chemical properties. Understanding the structural evolution of such materials under high pressure is crucial for the development of new functional materials. In this study, the structure evolution of the synthesized layered rare-earth hydroxyhalide YCl(OH)2 under high pressures up to approximately 9.4 GPa was explored by using a diamond anvil cell combined with synchrotron single-crystal X-ray diffraction. Simultaneously, high-pressure Raman spectroscopy experiment was conducted to 10.3 GPa. Our findings indicate that YCl(OH)2 maintains its symmetry within the experimental pressure range. The pressure-volume data of YCl(OH)2 were fitted to the third-order Birch-Murnaghan equation of state (EoS) to derive its EoS parameters including zero-pressure unit-cell volume (VT0), isothermal bulk modulus (KT0), and its pressure derivative (K'T0): VT0 = 142.47 (1) Å3, KT0 = 38.2 (18) GPa, and K'T0 = 9.8 (1). However, the unit-cell parameters a, b, and c exhibit a distinct compressional behavior, with the a-axis being the most compressible and the b-axis being the least. Particularly noteworthy is the observation that YCl(OH)2 displays a negative linear compressibility along the b-axis within the pressure range of 0.4-5.3 GPa. Further detailed structure refinement and Raman spectroscopy analyses indicate that the anomalous behavior of the b-axis could be attributed to the formation of the O-H···O hydrogen bonding chains along the b direction. Moreover, the coordination number of Y3+ increased from 8 to 9 as the pressure reached 5.3 GPa due to the reduction of the interlayer spacing upon compression, ultimately leading to the closure of the interlayer gap.

3.
Inorg Chem ; 63(21): 9763-9770, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38739043

RESUMO

The delafossites are a class of layered metal oxides that are notable for being able to exhibit optical transparency alongside an in-plane electrical conductivity, making them promising platforms for the development of transparent conductive oxides. Pressure-induced polymorphism offers a direct method for altering the electrical and optical properties in this class, and although the copper delafossites have been studied extensively under pressure, the silver delafossites remain only partially studied. We report two new high-pressure polymorphs of silver ferrite delafossite, AgFeO2, that are stabilized above ∼6 and ∼14 GPa. In situ X-ray diffraction and vibrational spectroscopy measurements are used to examine the structural changes across the two phase transitions. The high-pressure structure between 6 and 14 GPa is assigned as a monoclinic C2/c structure that is analogous to the high-pressure phase reported for AgGaO2. Nuclear resonant forward scattering reveals no change in the spin state or valence state at the Fe3+ site up to 15.3(5) GPa.

4.
Commun Chem ; 7(1): 141, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909153

RESUMO

In contrast to two-dimensional (2D) monolayer materials, van der Waals layered transition metal dichalcogenides exhibit rich polymorphism, making them promising candidates for novel superconductor, topological insulators and electrochemical catalysts. Here, we highlight the role of hydrostatic pressure on the evolution of electronic and crystal structures of layered ZrS2. Under deviatoric stress, our electrical experiments demonstrate a semiconductor-to-metal transition above 30.2 GPa, while quasi-hydrostatic compression postponed the metallization to 38.9 GPa. Both X-ray diffraction and Raman results reveal structural phase transitions different from those under hydrostatic pressure. Under deviatoric stress, ZrS2 rearranges the original ZrS6 octahedra into ZrS8 cuboids at 5.5 GPa, in which the unique cuboids coordination of Zr atoms is thermodynamically metastable. The structure collapses to a partially disordered phase at 17.4 GPa. These complex phase transitions present the importance of deviatoric stress on the highly tunable electronic properties of ZrS2 with possible implications for optoelectronic devices.

5.
Sci Rep ; 14(1): 6079, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480812

RESUMO

Understanding changes in material properties through external stimuli plays a key role in validating the expected performance of materials and engineering material properties in a controlled manner. Here, we introduce a fundamental protocol to deduce dehydration reactions kinetics of water confined in nanopore channels, with the cyclosilicate beryl as the scaffold of interest, using time-resolved synchrotron X-ray diffraction (SXRD), in the temperature interval of 298-1038 K. The temperature-dependent intensity ( I ) of the strongest reflection (112) was used as the crystallite variable. An estimation of an isobaric thermal crystallite coefficient, k , analogous with the isobaric thermal expansion coefficient, established the rate of relative crystallization as a function of temperature, ∂ I ∂ T . A plot of lnk and 1 T gives rise to two kinetic steps, indicating a slow dehydration stage up to ~ 700 K and a fast dehydration stage up to the investigated temperature 1038 K. The crystal structure of beryl determined up to 1038 K, in temperature increment as small as 10 K, indicates the presence of channel ions Na and Fe and a gradual decrease of water upon heating.

6.
J Phys Condens Matter ; 36(25)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38534017

RESUMO

Dirac materials offer exciting opportunities to explore low-energy carrier dynamics and novel physical phenomena, especially their interaction with magnetism. In this context, this work focuses on studies of pressure control on the magnetic state of EuMnBi2, a representative magnetic Dirac semimetal, through time-domain synchrotron Mössbauer spectroscopy in151Eu. Contrary to the previous report that the antiferromagnetic order is suppressed by pressure above 4 GPa, we have observed robust magnetic order up to 33.1 GPa. Synchrotron-based x-ray diffraction experiment on a pure EuMnBi2sample shows that the tetragonal crystal lattice remains stable up to at least 31.7 GPa.

7.
ACS Omega ; 9(22): 23675-23687, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38854550

RESUMO

The phase transition of AF2 difluorides strongly depends on pressure, temperature, and cationic radius. Here, we have investigated the phase transition of three difluorides, including MgF2, CaF2, and BaF2, at simultaneously high pressures and temperatures using Raman spectroscopy and X-ray diffraction in externally heated diamond anvil cells up to 55 GPa at 300-700 K. Rutile-type difluoride MgF2 with a small cationic radius undergoes a transition to the CaCl2-type phase at 9.9(1) GPa and 300 K, to the HP-PdF2-type phase at 21.0(2) GPa, and to the cotunnite-type phase at 44.2(2) GPa. The phase transition pressure to the HP-PdF2 and cotunnite structure at 300 K for our single crystal was found to be higher than that in previous studies using polycrystalline samples. Elevating the temperature increases the transition pressure from rutile- to the CaCl2-type phase but has a negative influence on the transition pressure when MgF2 transforms from the HP-PdF2- to cotunnite-type phase. Meanwhile, the transition pressure from the CaCl2- to HP-PdF2-type phase for MgF2 was identified to be independent of the temperature. Raman peaks suspected to belong to the α-PbO2-type phase were observed at 14.6-21.0(1) GPa and 400-700 K. At 300 K, difluorides CaF2 and BaF2 in the fluorite structure with larger cationic radii transform to the cotunnite-type phase at 9.6(3) and 3.0(3) GPa at 300 K, respectively, and BaF2 further undergoes a transition to the Ni2In-type phase at 15.5(4) GPa. For both CaF2 and BaF2, elevating the temperature leads to a lower transition pressure from fluorite- to the cotunnite-type phase but has little influence on the transition to the Ni2In structure. Raman data provide valuable insights for mode Grüneisen parameters. We note that the mode Grüneisen parameters for both difluorides and dioxides vary linearly with the cation radius. Further calculations for the mode Grüneisen parameters at high pressures for MgF2, CaF2, and BaF2 yield a deeper understanding of the thermodynamic properties of the difluorides.

8.
Commun Chem ; 7(1): 175, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117717

RESUMO

Cesium lead bromide (CsPbBr3) is a prominent halide perovskite with extensive optoelectronic applications. In this study, we report the pressure modulation of CsPbBr3's crystal structure and electronic properties at room temperature up to 5 GPa. We have observed a crystal structure transition from the orthorhombic Pnma space group to a new monoclinic phase in the space group P21/c at 2.08 GPa. The structure is associated with ~8% of density jump across the transition boundary. DFT calculations have suggested that the structure transition leads to a change in the electronic band structure, and there is an emergent indirect bandgap at the Pnma-P21/c phase transition boundary at 2.08 GPa. Across the transition boundary, the electronic band gap of CsPbBr3 increased from 2.07 eV to 2.38 eV, which explains its pressure-induced color change. Our study demonstrates the importance of using in-situ crystal structure in the electronic band structure calculations in halide perovskites.

9.
Chem Mater ; 36(7): 3128-3137, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617806

RESUMO

Lacunar spinels, represented by AM4X8 compounds (A = Ga or Ge; M = V, Mo, Nb, or Ta; X = S or Se), form a unique group of ternary chalcogenide compounds. Among them, GeV4S8 has garnered significant attention due to its distinctive electrical and magnetic properties. While previous research efforts have primarily focused on studying how this material behaves under cooling conditions, pressure is another factor that determines the state and characteristics of solid matter. In this study, we employed a diamond anvil cell in conjunction with high-energy synchrotron X-ray diffraction, Raman spectroscopy, four-point probes, and theoretical computation to thoroughly investigate this material. We found that the structural transformation from cubic to orthorhombic was initiated at 34 GPa and completed at 54 GPa. Through data fitting of volume vs pressure, we determined the bulk moduli to be 105 ± 4 GPa for the cubic phase and 111 ± 12 GPa for the orthorhombic phase. Concurrently, electrical resistance measurements indicated a semiconductor-to-nonmetallic conductor transition at ∼15 GPa. Moreover, we experimentally assessed the band gaps at different pressures to validate the occurrence of the electrical phase transition. We infer that the electrical phase transition correlates with the valence electrons in the V4 cluster rather than the crystal structure transformation. Furthermore, the computational results, electronic density of states, and band structure verified the experimental observation and facilitated the understanding of the mechanism governing the electrical phase transition in GeV4S8.

10.
J Phys Chem Lett ; 15(1): 76-80, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38133800

RESUMO

Water-in-salt electrolytes have attracted considerable interest in the past decade for advanced lithium-ion batteries, possessing important advantages over the non-aqueous electrolytes currently in use. A battery with a LiTFSI-water electrolyte was demonstrated in which an operating window of 3 V is made possible by a solid-electrolyte interface. Viscosity is an important property for such electrolytes, because high viscosity is normally associated with low ionic conductivity. Here, we investigate shear and longitudinal viscosities using shear stress and compressional longitudinal stress measurements as functions of frequency and concentration. We find that both viscosities are frequency-dependent and exhibit almost identical frequency and concentration dependences in the high-concentration region. A comparison to quasielastic neutron scattering experiments suggests that both are governed by structural relaxation of the TFSI- network. Thus, LiFTSI-water electrolytes appear to be an unusual case of a non-Newtonian fluid, where shear and longitudinal viscosities are determined by the same relaxation mechanism.

11.
Nat Commun ; 15(1): 4428, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789448

RESUMO

Subducting sedimentary layer typically contains water and hydrated clay minerals. The stability of clay minerals under such hydrous subduction environment would therefore constraint the lithology and physical properties of the subducting slab interface. Here we show that pyrophyllite (Al2Si4O10(OH)2), one of the representative clay minerals in the alumina-silica-water (Al2O3-SiO2-H2O, ASH) system, breakdowns to contain further hydrated minerals, gibbsite (Al(OH)3) and diaspore (AlO(OH)), when subducts along a water-saturated cold subduction geotherm. Such a hydration breakdown occurs at a depth of ~135 km to uptake water by ~1.8 wt%. Subsequently, dehydration breakdown occurs at ~185 km depth to release back the same amount of water, after which the net crystalline water content is preserved down to ~660 km depth, delivering a net amount of ~5.0 wt% H2O in a phase assemblage containing δ-AlOOH and phase Egg (AlSiO3(OH)). Our results thus demonstrate the importance of subducting clays to account the delivery of ~22% of water down to the lower mantle.

12.
Nat Commun ; 15(1): 3001, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589388

RESUMO

Designing two-dimensional halide perovskites for high-performance optoelectronic applications requires deep understanding of the structure-property relationship that governs their excitonic behaviors. However, a design framework that considers both intra and interlayer structures modified by the A-site and spacer cations, respectively, has not been developed. Here, we use pressure to synergistically tune the intra and interlayer structures and uncover the structural modulations that result in improved optoelectronic performance. Under applied pressure, (BA)2(GA)Pb2I7 exhibits a 72-fold boost of photoluminescence and 10-fold increase of photoconductivity. Based on the observed structural change, we introduce a structural descriptor χ that describes both the intra and interlayer characteristics and establish a general quantitative relationship between χ and photoluminescence quantum yield: smaller χ correlates with minimized trapped excitons and more efficient emission from free excitons. Building on this principle, we design a perovskite (CMA)2(FA)Pb2I7 that exhibits a small χ and an impressive photoluminescence quantum yield of 59.3%.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa