Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
BMC Genomics ; 24(1): 265, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37202739

RESUMO

BACKGROUND: Cattle (Bos taurus) are a major large livestock, however, compared with other species, the transcriptional specificity of bovine oocyte development has not been emphasised. RESULTS: To reveal the unique transcriptional signatures of bovine oocyte development, we used integrated multispecies comparative analysis and weighted gene co-expression network analysis (WGCNA) to perform bioinformatic analysis of the germinal follicle (GV) and second meiosis (MII) gene expression profile from cattle, sheep, pigs and mice. We found that the expression levels of most genes were down-regulated from GV to MII in all species. Next, the multispecies comparative analysis showed more genes involved in the regulation of cAMP signalling during bovine oocyte development. Moreover, the green module identified by WGCNA was closely related to bovine oocyte development. Finally, integrated multispecies comparative analysis and WGCNA picked up 61 bovine-specific signature genes that participate in metabolic regulation and steroid hormone biosynthesis. CONCLUSION: In a short, this study provides new insights into the regulation of cattle oocyte development from a cross-species comparison.


Assuntos
Oócitos , Transcriptoma , Bovinos , Animais , Camundongos , Ovinos/genética , Suínos , Oócitos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Oogênese/genética , Perfilação da Expressão Gênica
2.
J Fish Dis ; 46(9): 977-986, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37294673

RESUMO

Streptococcosis disease caused by Streptococcus agalactiae (Group B Streptococcus, GBS) results in a huge economic loss of tilapia culture. It is urgent to find new antimicrobial agents against streptococcosis. In this study, 20 medicinal plants were evaluated in vitro and in vivo to obtain medicinal plants and potential bioactive compounds against GBS infection. The results showed that the ethanol extracts of 20 medicinal plants had low or no antibacterial properties in vitro, with a minimal inhibitory concentration ≥256 mg/L. Interestingly, in vivo tests showed that 7 medicinal plants could significantly inhibit GBS infection in tilapia, and Sophora flavescens (SF) had the strongest anti-GBS activity in tilapia, reaching 92.68%. SF could significantly reduce the bacterial loads of GBS in different tissues (liver, spleen and brain) of tilapia after treated with different tested concentrations (12.5, 25.0, 50.0 and 100.0 mg/kg) for 24 h. Moreover, 50 mg/kg SF could significantly improve the survival rate of GBS-infected tilapia by inhibiting GBS replication. Furthermore, the expression of antioxidant gene cat, immune-related gene c-type lysozyme and anti-inflammatory cytokine il-10 in liver tissue of GBS-infected tilapia significantly increased after treated with SF for 24 h. Meanwhile, SF significantly reduced the expression of immune-related gene myd88 and pro-inflammatory cytokines il-8 and il-1ß in liver tissue of GBS-infected tilapia. The negative and positive models of UPLC-QE-MS, respectively, identified 27 and 57 components of SF. The major components of SF extract in the negative model were α, α-trehalose, DL-malic acid, D- (-)-fructose and xanthohumol, while in the positive model were oxymatrine, formononetin, (-)-maackiain and xanthohumol. Interestingly, oxymatrine and xanthohumol could significantly inhibit GBS infection in tilapia. Taken together, these results suggest that SF can inhibit GBS infection in tilapia, and it has potential for the development of anti-GBS agents.


Assuntos
Ciclídeos , Doenças dos Peixes , Plantas Medicinais , Infecções Estreptocócicas , Tilápia , Animais , Sophora flavescens , Streptococcus agalactiae/genética , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/microbiologia , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Tilápia/microbiologia , Citocinas , Ciclídeos/microbiologia
3.
Genomics ; 114(3): 110379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35526740

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. It has been brought to our attention that the authors of the article "Parallel bimodal single-cell sequencing of transcriptome and methylome provides molecular and translational insights on oocyte maturation and maternal aging" cannot agree on who should be listed as an author of the article. Further inquiry by the journal revealed that the authorship was also changed at the revision stages of the article without notifying the handling Editor, which is contrary to the journal policy on changes to authorship. The journal considers this unacceptable practice, and the Editor-in-Chief decided to retract the article.

4.
J Pineal Res ; 73(4): e12833, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36106819

RESUMO

In vitro differentiation of stem cells into functional gametes remains of great interest in the biomedical field. Skin-derived stem cells (SDSCs) are an adult stem cells that provides a wide range of clinical applications without inherent ethical restrictions. In this paper, porcine SDSCs were successfully differentiated into primordial germ cell-like cells (PGCLCs) in conditioned media. The PGCLCs were characterized in terms of cell morphology, marker gene expression, and epigenetic properties. Furthermore, we also found that 25 µM melatonin (MLT) significantly increased the proliferation of the SDSC-derived PGCLCs while acting through the MLT receptor type 1 (MT1). RNA-seq results found the mitogen-activated protein kinase (MAPK) signaling pathway was more active when PGCLCs were cultured with MLT. Moreover, the effect of MLT was attenuated by the use of S26131 (MT1 antagonist), crenolanib (platelet-derived growth factor receptor inhibitor), U0126 (mitogen-activated protein kinase kinase inhibitor), or CCG-1423 (serum response factor transcription inhibitor), suggesting that MLT promotes the proliferation processes through the MAPK pathway. Taken together, this study highlights the role of MLT in promoting PGCLCs proliferation. Importantly, this study provides a suitable in vitro model for use in translational studies and could help to answer numerous remaining questions related to germ cell physiology.


Assuntos
Melatonina , Suínos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Fator de Resposta Sérica/metabolismo , Fator de Resposta Sérica/farmacologia , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Células Germinativas/metabolismo , Células-Tronco , Diferenciação Celular , Proliferação de Células , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/farmacologia
5.
Fish Shellfish Immunol ; 126: 96-103, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35613670

RESUMO

White Spot Disease (WSD), caused by white spot syndrome virus (WSSV), is an acute and highly lethal viral disease of shrimp. Currently, there are no commercially available drugs to control WSD. It is urgent and necessary to find anti-WSSV drugs. Natural compounds are an important source of antiviral drug discovery. In this study, the anti-WSSV activity of natural compound geniposide (GP) was investigated in crayfish Procambarus clarkii. Results showed that GP had a concentration-dependent inhibitory effect on WSSV replication in crayfish at 24 h, and highest inhibition was more than 98%. In addition, GP significantly inhibited the expression of WSSV immediate-early gene ie1, early gene DNApol, late gene VP28. The mortality of WSSV-infected crayfish in control groups was 100%, while it reduced by 70.0% when treated with 50 mg/kg GP. Co-incubation, pre-treatment and post-treatment experiments showed that GP could prevent and treat WSSV infection in crayfish by significantly inhibiting WSSV multiplication. Mechanistically, the syntheses of WSSV structural proteins VP19, VP24, VP26 and VP28 were significantly inhibited by GP in S2 cells. Furthermore, GP could also suppress WSSV replication by blocking the expression of antiviral immunity-related factor STAT to reduce ie1 transcription. Moreover, GP possessed anti-inflammatory and anti-oxidative activity in crayfish. Overall, GP has the potential to be developed as a preventive or therapeutic agent against WSSV infection.


Assuntos
Vírus da Síndrome da Mancha Branca 1 , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Astacoidea , Iridoides/farmacologia , Taxa de Sobrevida , Vírus da Síndrome da Mancha Branca 1/fisiologia
6.
Cell Mol Life Sci ; 78(2): 695-713, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32367190

RESUMO

Meiosis is one of the most finely orchestrated events during gametogenesis with distinct developmental patterns in males and females. However, the molecular mechanisms involved in this process remain not well known. Here, we report detailed transcriptome analyses of cell populations present in the mouse female gonadal ridges (E11.5) and the embryonic ovaries from E12.5 to E14.5 using single-cell RNA sequencing (scRNA seq). These periods correspond with the initiation and progression of meiosis throughout the first stage of prophase I. We identified 13 transcriptionally distinct cell populations and 7 transcriptionally distinct germ cell subclusters that correspond to mitotic (3 clusters) and meiotic (4 clusters) germ cells. By analysing cluster-specific gene expression profiles, we found four cell clusters correspond to different cell stages en route to meiosis and characterized their detailed transcriptome dynamics. Our scRNA seq analysis here represents a new important resource for deciphering the molecular pathways driving female meiosis initiation.


Assuntos
Perfilação da Expressão Gênica/métodos , Meiose , Ovário/citologia , Análise de Célula Única/métodos , Transcriptoma , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Ovário/embriologia
7.
J Fish Dis ; 45(6): 815-823, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35315084

RESUMO

Streptococcus agalactiae, also known as Group B Streptococcus (GBS), can infect humans, terrestrial animals and fish. The emergence of bacterial resistance of S. agalactiae to antibiotics leads to an urgent need of exploration of new antimicrobial agents. In the study, the antibacterial activity of natural component plumbagin (PLB) against S. agalactiae was investigated in vitro and in vivo. The results showed that the minimal inhibitory concentration (MIC) of PLB against S. agalactiae was 8 mg/L. The growth curve assay revealed that PLB could inhibit the growth of S. agalactiae. In addition, the time-killing curve showed that S. agalactiae was killed almost completely by 2-fold MIC of PLB within 12 h. Transmission electron microscopy results showed obvious severe morphological destruction and abnormal cells of S. agalactiae after treated with PLB. The pathogenicity of S. agalactiae to zebrafish was significantly decreased after preincubation with PLB for 2 h in vitro, further indicating the bactericidal activity of PLB. Interestingly, PLB could kill S. agalactiae without inducing resistance development. Furthermore, pretreatment and post-treatment assays suggested that PLB also exhibited the antibacterial activity against S. agalactiae infection in vivo by effectively reducing the bacterial load and improving the survival rate of S. agalactiae-infected zebrafish. In summary, PLB had potent antibacterial activity against S. agalactiae in vitro and in vivo, and it could be an excellent antimicrobial candidate to prevent and control S. agalactiae infection.


Assuntos
Doenças dos Peixes , Infecções Estreptocócicas , Animais , Antibacterianos/farmacologia , Doenças dos Peixes/microbiologia , Naftoquinonas , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae , Peixe-Zebra
8.
Ecotoxicol Environ Saf ; 248: 114344, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455349

RESUMO

Considering that research has mainly focussed on how excessive iron supplementation leads to reproductive cytotoxicity, there is a lack of in-depth research on reproductive system disorders caused by iron deficiency. To gain a better understanding of the effects of iron deficiency on the reproductive system, especially spermatogenesis, we first constructed a mouse model of iron deficiency. We employed multi-omic analysis, including transcriptomics, metabolomics, and microbiomics, to comprehensively dissect the impact of iron deficiency on spermatogenesis. Moreover, we verified our findings in detail using western blot, immunofluorescence, immunohistochemistry, qRT-PCR and other techniques. Microbiomic analysis revealed altered gut microbiota in iron-deficient mice, and functional predictive analysis showed that gut microbiota can regulate spermatogenesis. The transcriptomic data indicated that iron deficiency directly alters expression of meiosis-related genes. Transcriptome data also revealed that iron deficiency indirectly regulates spermatogenesis by affecting hormone synthesis, findings confirmed by metabolomic data, western blot and immunofluorescence. Interestingly, competing endogenous RNA networks also play a vital role in regulating spermatogenesis after iron deficiency. Taken together, the data elucidate that iron deficiency impairs spermatogenesis and increases the risk of male infertility by affecting hormone synthesis and promoting gut microbiota imbalance.


Assuntos
Deficiências de Ferro , Masculino , Camundongos , Animais , Espermatogênese , Metabolômica , Ferro , Hormônios
9.
Reprod Domest Anim ; 57(11): 1295-1306, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35789122

RESUMO

Mongolian horses have been bred and used for labor and transport for centuries. Nevertheless, traits of testicular development in Mongolian horses have rarely been studied; particularly, studies regarding the transcriptional regulation characteristics of testicular development are lacking. In this paper, transcription specificity during testicular development in Mongolian horses is highlighted via a multispecies comparative analysis and weighted gene co-expression network analysis (WGCNA). Interestingly, the results showed that most genes were up-regulated in the testes after sexual maturity, which is a phenomenon conserved across species. Moreover, we observed nine key genes involved in regulating Mongolian horse testicular development. Notably, unique transcription signatures of testicular development in Mongolian horses are emphasized, which provides a novel insight into the mechanistic study of their testicular development.


Assuntos
Testículo , Masculino , Animais , Cavalos/genética , Fenótipo
10.
Environ Res ; 198: 111225, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971129

RESUMO

Natural and synthetic environmental estrogens (EEs), interfering with the physiological functions of the body's estrogens, are widespread and are rising much concern for their possible deleterious effects on human and animal health, in particular on reproduction. In fact, increasing evidence indicate that EEs can be responsible for a variety of disfunctions of the reproductive system especially in females such as premature ovarian insufficiency (POI). Because of their great structural diversity, the modes of action of EEs are controversial. One important way through which EEs exert their effects on reproduction is the induction of apoptosis in the ovary. In general, EEs can exert pro-and anti-apoptotic effects by agonizing or antagonizing numerous estrogen-dependent signaling pathways. In the present work, results concerning apoptotic pathways and diseases induced by representative EEs (such as zearalenone, bisphenol A and di-2-ethylhexyl phthalate), in ovaries throughout development are presented into an integrated network. By reviewing and elaborating these studies, we propose inflammatory factors, centered on the production of tumor necrosis factor (TNF), as a major cause of the induction of apoptosis by EEs in the mammalian ovary. As a consequence, potential strategies to prevent such EE effect are suggested.


Assuntos
Citocinas , Ovário , Animais , Apoptose , Estrogênios/toxicidade , Feminino , Humanos , Transdução de Sinais
11.
Hepatology ; 67(1): 21-35, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28859237

RESUMO

Cystathionine ß-synthase (CBS) catalyzes the transsulfuration pathway and contributes, among other functions, to the generation of hydrogen sulfide. In view of the exceptionally high expression of CBS in the liver and the common interleukin-6 pathway used in the regulatory systems of hydrogen sulfide and hepcidin, we speculate that CBS is involved in body iron homeostasis. We found that CBS knockout (CBS-/- ) mice exhibited anemia and a significant increase in iron content in the serum, liver, spleen, and heart, along with severe damage to the liver, displaying a hemochromatosis-like phenotype. A high level of hepatic and serum hepcidin was also found. A major cause of the systemic iron overload is the reduced iron usage due to suppressed erythropoiesis, which is consistent with an increase in interleukin-6 and reduced expression of erythropoietin. Importantly, in the liver, absence of CBS caused both a reduction in the transcriptional factor nuclear factor erythroid 2-related factor-2 and an up-regulation of hepcidin that led to a decrease in the iron export protein ferroportin 1. The resulting suppression of iron export exacerbates iron retention, causing damage to hepatocytes. Finally, administration of CBS-overexpressing adenovirus into CBS mutant mice could partially reverse the iron-related phenotype. CONCLUSION: Our findings point to a critical role of CBS in iron homeostasis of the body, and the liver in particular; it is likely that a hemochromatosis-like phenotype in patients can be induced by aberration not only in the expression of key molecules in the hepcidin pathway but also of those related to CBS. (Hepatology 2018;67:21-35).


Assuntos
Anemia Ferropriva/enzimologia , Anemia Ferropriva/patologia , Cistationina beta-Sintase/metabolismo , Hepatócitos/enzimologia , Ferro/metabolismo , Fígado/enzimologia , Anemia Ferropriva/metabolismo , Animais , Biópsia por Agulha , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Hepatócitos/metabolismo , Hepcidinas/metabolismo , Homeostase , Humanos , Imuno-Histoquímica , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise Multivariada , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real/métodos , Valores de Referência
12.
J Cell Physiol ; 233(1): 30-37, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28338217

RESUMO

The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft-L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O-acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft-L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft-L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre-treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Jejum/metabolismo , Grelina/metabolismo , Macrófagos Peritoneais/enzimologia , Receptores de Grelina/metabolismo , Transdução de Sinais , Baço/enzimologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Apoferritinas/genética , Apoferritinas/metabolismo , Proteínas de Transporte de Cátions/genética , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Grelina/genética , Antagonistas de Hormônios/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Grelina/antagonistas & inibidores , Receptores de Grelina/genética , Baço/efeitos dos fármacos , Regulação para Cima
13.
Neurochem Res ; 43(8): 1624-1630, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29923037

RESUMO

A region-specific regulation of inflammation on the expression hepcidin in the brain has been demonstrated, however, it remains unknown whether there is also a cell-specific regulation of inflammation on hepcidin in the brain. Here, we investigated the effects of lipopolysaccharides (LPS) on the expression of hepcidin mRNA and also the expression of IL-6 mRNA, the phosphorylation of STAT3 and the expression of ferroportin 1 (Fpn1) and ferritin light chain (Ft-L) proteins in neurons and astrocytes obtained from wild type (IL-6+/+) and IL-6 knockout (IL-6-/-) mice. We demonstrated that the responses of the expression of hepcidin and IL-6 mRNAs, the phosphorylation of STAT3, and the expression of Fpn1 protein to LPS in IL-6+/+ astrocytes and also the responses of the expression of hepcidin mRNA, the phosphorylation of STAT3 and the expression of Fpn1 protein to IL-6 in IL-6-/- astrocytes were much stronger than those in IL-6+/+ and IL-6-/- neurons. A significant increase in Ft-L was found in LPS-treated IL-6+/+ and IL-6-treated IL-6-/- astrocytes, but not in LPS-treated IL-6+/+ and IL-6-treated IL-6-/- neurons. Our findings provide in vitro evidence for the existence of a cell-specific regulation of LPS on the expression of hepcidin and also Ft-L in the brain.


Assuntos
Astrócitos/efeitos dos fármacos , Hepcidinas/metabolismo , Lipopolissacarídeos/farmacologia , Neurônios/efeitos dos fármacos , Animais , Apoferritinas/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Técnicas de Inativação de Genes , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo
15.
J Hazard Mater ; 468: 133836, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394902

RESUMO

Global aflatoxin B1 (AFB1) contamination is inevitable, and it can significantly damage testicular development. However, the current mechanism is confusing. Here, by integrating the transcriptome, microbiome, and serum metabolome, we comprehensively explain the impact of AFB1 on testis from the gut-metabolism-testis axis. Transcriptome analysis suggested that AFB1 exposure directly causes abnormalities in testicular inflammation-related signalling, such as tumor necrosis factor (TNF) pathway, and proliferation-related signalling pathways, such as phosphatidylinositide 3-kinases-protein kinase B (PI3K-AKT) pathway, which was verified by immunofluorescence. On the other hand, we found that upregulated inflammatory factors in the intestine after AFB1 exposure were associated with intestinal microbial dysbiosis, especially the enrichment of Bacilli, and enrichment analysis showed that this may be related to NLR family pyrin domain containing 3 (NLRP3)-mediated NOD-like receptor signalling. Also, AFB1 exposure caused blood metabolic disturbances, manifested as decreased hormone levels and increased oxidative stress. Significantly, B. licheniformis has remarkable AFB1 degradation efficiency (> 90%). B. licheniformis treatment is effective in attenuating gut-testis axis damage caused by AFB1 exposure through the above-mentioned signalling pathways. In conclusion, our findings indicate that AFB1 exposure disrupts testicular development through the gut-metabolism-testis axis, and B. licheniformis can effectively degrade AFB1.


Assuntos
Bacillus licheniformis , Testículo , Masculino , Humanos , Aflatoxina B1/toxicidade , Aflatoxina B1/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Metaboloma
16.
Cell Death Discov ; 9(1): 235, 2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422452

RESUMO

Despite aging is closely linked to increased aneuploidy in the oocytes, the mechanism of how aging affects aneuploidy remains largely elusive. Here, we applied single-cell parallel methylation and transcriptome sequencing (scM&T-seq) data from the aging mouse oocyte model to decode the genomic landscape of oocyte aging. We found a decline in oocyte quality in aging mice, as manifested by a significantly lower rate of first polar body exclusion (P < 0.05), and dramatically increasing aneuploidy rate (P < 0.01). Simultaneously, scM&T data suggested that a large number of differential expression genes (DEGs) and differential methylation regions (DMRs) were obtained. Next, we identified strong association of spindle assembly and mitochondrial transmembrane transport during oocyte aging. Moreover, we verified the DEGs related to spindle assembly (such as Naip1, Aspm, Racgap1, Zfp207) by real-time quantitative PCR (RT-qPCR) and checked the mitochondrial dysfunction by JC-1 staining. Pearson correlation analysis found that receptors for mitochondrial function were strongly positively correlated with abnormal spindle assembly (P < 0.05). In conclusion, these results suggested that the mitochondrial dysfunction and abnormal spindle assembly of aging oocytes ultimately may lead to increased oocyte aneuploidy.

17.
J Agric Food Chem ; 71(44): 16715-16726, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37889105

RESUMO

Zearalenone (ZEN) is well known as a kind of endocrine disruptor whose exposure is capable of causing reproductive toxicity in animals. Cyanidin-3-O-glucoside (C3G) is a derivative of cyanidin and owns multiple biofunctions, and prior efforts have suggested that C3G has therapeutic actions for reproductive diseases. In this article, a ZEN exposure model during primordial follicle assembly was constructed using the in vitro culture platform of neonatal mouse ovaries. We investigated the protective effect of C3G on ZEN-induced ovarian toxicity during primordial follicle assembly in mice, as well as its potential mechanism. Interestingly, we observed that C3G could effectively protect the ovary from ZEN damage, mainly by restoring primordial follicle assembly, which upregulated the expression of LHX8 and SOHLH1 proteins and relieved ZEN-induced DNA damage. Next, to explore the mechanism by which C3G rescued ZEN-induced injury, we performed RNA sequencing (RNA-seq). The bioinformatic analysis illustrated that the rescue pathway of C3G was associated with p53-Gadd45a signaling and cell cycle. Then, western blotting and flow cytometry results revealed that C3G restored the expression levels of cyclin-dependent kinase 6 (CDK6) and cyclin D2 (CCND2) and regulated the ovarian cell cycle to normal. In conclusion, our findings manifested that C3G could alleviate ZEN-induced primordial follicle assembly impairment by restoring the cell cycle involved in p53-GADD45a signaling.


Assuntos
Ovário , Zearalenona , Feminino , Animais , Camundongos , Zearalenona/toxicidade , Proteína Supressora de Tumor p53 , Antocianinas/farmacologia , Glucosídeos/farmacologia
18.
Cell Death Dis ; 14(2): 134, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36797258

RESUMO

In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.


Assuntos
Fatores de Transcrição , Transcriptoma , Feminino , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Epigenômica , Meiose/genética , Cromatina/genética
19.
Theriogenology ; 212: 129-139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37717516

RESUMO

Understanding the mechanisms behind porcine primordial germ cell like cells (pPGCLCs) development, differentiation, and gametogenesis is crucial in the treatment of infertility. In this study, SOX9+ skin derived stem cells (SOX9+ SDSCs) were isolated from fetal porcine skin and a high-purity SOX9+ SDSCs population was obtained. The SOX9+ SDSCs were induced to transdifferentiate into PGCLCs during 8 days of cultured. The results of RNA-seq, western blot and immunofluorescence staining verified SDSCs have the potential to transdifferentiate into PGCLCs from aspects of transcription factor activation, germ layer differentiation, energy metabolism, and epigenetic changes. Both adherent and suspended cells were collected. The adherent cells were found to be very similar to early porcine primordial germ cells (pPGCs). The suspended cells resembled late stage pPGCs and had a potential to enter meiotic process. This SDSCs culture-induced in vitro model is expected to provide suitable donor cells for stem cell transplantation in the future.


Assuntos
Células Germinativas , Células-Tronco , Suínos , Animais , Diferenciação Celular/fisiologia , Células Germinativas/metabolismo , Gametogênese , Células Cultivadas
20.
Environ Pollut ; 329: 121729, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116564

RESUMO

Aflatoxins B1 (AFB1), a type I carcinogen widely present in the environment, not only poses a danger to animal husbandry, but also poses a potential threat to human reproductive health, but its mechanism is still unclear. To address this question, multi-omics were performed on porcine Sertoli cells and mice testis. The data suggest that AFB1 induced testicular damage manifested as decreased expression of GJA1, ZO1 and OCCLUDIN in mice (p < 0.01) and inhibition of porcine Sertoli cell proliferation. Transcriptomic analysis suggested changes in noncoding RNA expression profiles that affect the cell cycle-related Ras/PI3K/Akt signaling pathway after AFB1 exposure both in mice and pigs. Specifically, AFB1 caused abnormal cell cycle of testis with the characterization of decreased expressions of CCNA1, CCNB1 and CDK1 (p < 0.01). Flow cytometry revealed that the G2/M phase was significantly increased after AFB1 exposure. Meanwhile, AFB1 downregulated the expressions of Ras, PI3K and AKT both in porcine Sertoli cell (p < 0.01) and mice testis (p < 0.01). Metabolome analysis verified the alterations in the PI3K/Akt signaling pathway (p < 0.05). Moreover, the joint analysis of metabolome and microbiome found that the changes of metabolites were correlated with the expression of flora. In conclusion, we have demonstrated that AFB1 impairs testicular development via the cell cycle-related Ras/PI3K/Akt signaling.


Assuntos
Aflatoxina B1 , Ciclo Celular , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Masculino , Camundongos , Aflatoxina B1/toxicidade , Divisão Celular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Suínos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa