Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biosci Biotechnol Biochem ; 84(6): 1123-1130, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32028854

RESUMO

The purpose of this study was to explore the functional implication of microRNA-218 (miR-218) in diabetic nephropathy (DN) through high-glucose-stimulated renal proximal tubule impairment. Biological function experiments showed that miR-218 and inflammatory factors TNF-α and IL-1ß were highly expressed in renal proximal tubule under high-glucose conditions. Inhibiting miR-218 alleviated renal tubular cell injury, which was represented by miR-218 inhibitor facilitating renal tubular cell vitality whilst reducing its apoptosis and levels of inflammation factors. In addition, we confirmed that miR-218 directly targeted GPRC5A and negatively regulated its expression. Co-transfection assay showed that overexpression of GPRC5A accentuated the mitigated action of miR-218 inhibitor on renal proximal tubule cell injury induced by high-glucose. Accordingly, these data indicated that downregulation of miR-218 can assuage high-glucose-resulted renal tubular cell damage, and its ameliorative effect was achieved by negative regulation of GPRC5A, which provides a novel direction for unearthing the pathogenesis and even further biological treatment of DN.


Assuntos
Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/metabolismo , Regulação para Baixo/genética , Glucose/efeitos adversos , Túbulos Renais/lesões , MicroRNAs/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Cultivadas , Nefropatias Diabéticas/urina , Humanos , Interleucina-1beta/metabolismo , Túbulos Renais/citologia , MicroRNAs/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção , Fator de Necrose Tumoral alfa/metabolismo
2.
PLoS One ; 18(3): e0282172, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36952521

RESUMO

BACKGROUND: Tumor necrosis factor-α (TNF-α) is an important mediator of the immune response. At present, the improvement of TNF-α after continuous positive airway pressure (CPAP) treatment of obstructive sleep apnea-hypopnea syndrome (OSAHS) is still controversial. METHODS: We conducted a systematic review of the present evidence based on a meta-analysis to elucidate the effects of TNF-α on OSAHS after CPAP treatment. RESULTS: To measure TNF-α, ten studies used enzyme-linked immunosorbent assay (ELISA), and one used radioimmunoassay. The forest plot outcome indicated that CPAP therapy would lower the TNF-α levels in OSAHS patients, with a weighted mean difference (WMD) of 1.08 (95% CI: 0.62-1.55; P < 0.001) based on the REM since there is highly significant heterogeneity (I2 = 90%) among the studies. Therefore, we used the subgroup and sensitivity analyses to investigate the source of heterogeneity. The findings of the sensitivity analysis revealed that the pooled WMD ranged from 0.91 (95% CI: 0.52-1.31; P < 0.001) to 1.18 (95% CI: 0.74-1.63; P < 0.001). The findings were not influenced by any single study. Notably, there was homogeneity in the Asia subgroup and publication year: 2019, implying that these subgroups could be the source of heterogeneity. CONCLUSION: Our meta-analysis recommends that CPAP therapy will decrease the TNF-α level in OSAHS patients, but more related research should be conducted.


Assuntos
Apneia Obstrutiva do Sono , Fator de Necrose Tumoral alfa , Humanos , Pressão Positiva Contínua nas Vias Aéreas , Apneia Obstrutiva do Sono/terapia , Síndrome , Ensaio de Imunoadsorção Enzimática
3.
J Ethnopharmacol ; 302(Pt A): 115882, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36341817

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Heidihuang Wan (HDHW) is a classic Chinese herbal formula, which was first recorded in the "Suwen Bingji Qiyi Baoming Collection" written by Liu Wansu during the Jin Dynasty (1115-1234 AD). It is commonly used clinically for the treatment of kidney diseases and its curative effect is stable. Previous animal experiments have confirmed that HDHW can effectively improve renal fibrosis. However, the underlying pharmacological mechanism remains unclear. AIMS OF THIS STUDY: Renal tubular epithelial cell (RTEC) apoptosis is one of the main pathological features of renal fibrosis. This study aimed to observe the effect and underlying mechanism of HDHW on the apoptosis of RTECs to further explore the pathological mechanism of HDHW against renal fibrosis. MATERIALS AND METHODS: We examined the HDHW composition in rat serum. In vitro, we first screened out the optimal intervention concentration of HDHW on RTECs using the MTT assay. Hypoxia/reoxygenation was then used to induce apoptosis of RTECs (H/R-RTECs), which were divided into H/R-RTEC, astragaloside IV (positive control), HDHW, and RTECs groups. After 48 h of drug intervention, apoptosis of RTECs was detected using flow cytometry and protein expression was detected by western blotting. The 5/6 nephrectomy rat model was constructed and divided into the normal control, 5/6 nephrectomy, HDHW, and astragaloside IV groups. After 8 weeks of treatment, TUNEL staining was used to detect cell apoptosis, and western blotting was used to detect protein expression. RESULTS: HDHW downregulated the expression of pro-apoptotic proteins Bax and Caspase3, up-regulated the expression of anti-apoptotic protein Bcl-2, activated the PI3K/Akt/mTOR signaling pathway, and reversed the early apoptosis of RTECs, thereby resisting the apoptosis of RTECs. CONCLUSION: HDHW inhibits apoptosis of RTECs by modulating the PI3K/Akt/mTOR signaling pathway. This study provides experimental evidence for the anti-fibrotic effect of HDHW on the kidneys and partially elucidates its pharmacological mechanism of action.


Assuntos
Nefropatias , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Células Epiteliais , Proteínas Reguladoras de Apoptose/metabolismo , Nefropatias/patologia , Fibrose
4.
Front Endocrinol (Lausanne) ; 14: 1085605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926022

RESUMO

Renal fibrosis (RF) is the common pathological manifestation of virtually all chronic kidney diseases (CKD) and one of the major causes of end-stage renal disease (ESRD), but the pathogenesis of which is still unclear. Renal tubulointerstitial lesions have been identified as a key pathological hallmark of RF pathology. Renal tubular epithelial cells are the resident cells of the tubulointerstitium and play an important role in kidney recovery versus renal fibrosis following injury. Studies in recent years have shown that senescence of renal tubular epithelial cells can accelerate the progression of renal fibrosis. Oxidative stress(OS), telomere attrition and DNA damage are the major causes of renal tubular epithelial cell senescence. Current interventions and therapeutic strategies for cellular senescence include calorie restriction and routine exercise, Klotho, senolytics, senostatics, and other related drugs. This paper provides an overview of the mechanisms and the key signaling pathways including Wnt/ß-catenin/RAS, Nrf2/ARE and STAT-3/NF-κB pathway involved in renal tubular epithelial cell senescence in RF and therapies targeting renal tubular epithelial cell senescence future therapeutic potential for RF patients. These findings may offer promise for the further treatment of RF and CKD.


Assuntos
Rim , Insuficiência Renal Crônica , Humanos , Rim/metabolismo , Senescência Celular , Insuficiência Renal Crônica/patologia , Células Epiteliais/metabolismo , Fibrose
5.
Front Pharmacol ; 13: 977284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160409

RESUMO

Renal fibrosis is a common pathway for the progression of various chronic kidney diseases (CKD), and the formation and deterioration will eventually lead to end-stage renal failure, which brings a heavy medical burden to the world. HeidihuangWan (HDHW) is a herbal formulation with stable and reliable clinical efficacy in the treatment of renal fibrosis. However, the mechanism of HDHW in treating renal fibrosis is not clear. In this study, we aimed to investigate the mechanism of HDHW to improve renal fibrosis. Wistar rats were randomly divided into the normal control group, 5/6 Nephrectomy group, astragaloside IV (AS-IV) group, HDHW group, and HDHW + IGF-1R inhibitor (JB1) group. Except for the normal control group, the rat renal fibrosis model was established by 5/6 nephrectomy and intervened with drugs for 8 weeks. Blood samples were collected to evaluate renal function. Hematoxylin-Eosin (HE), Periodic Acid-Schiff (PAS), Modified Masson's Trichrome (Masson) staining were used to evaluate the pathological renal injury, and immunohistochemistry and Western blotting were used to detect the protein expression of renal tissue. The results showed that HDHW was effective in improving renal function and reducing renal pathological damage. HDHW down-regulated the levels of fibrosis marker proteins, including α-smooth muscle actin (α-SMA), vimentin, and transforming growth factors-ß(TGF-ß), which in turn reduced renal fibrosis. Further studies showed that HDHW down-regulated the expression of autophagy-related proteins Beclin1 and LC3II, indicating that HDHW inhibited autophagy. In addition, we examined the activity of the class I phosphatidylinositol-3 kinase (PI3K)/serine-threonine kinase (Akt)/mTOR pathway, an important signaling pathway regulating autophagy, and the level of insulin-like growth factor 1 (IGF-1), an upstream activator of PI3K/Akt/mTOR. HDHW upregulated the expression of IGF-1 and activated the PI3K/Akt/mTOR pathway, which may be a vital pathway for its inhibition of autophagy. Application of insulin-like growth factor 1 receptor (IGF-1R) inhibitor further confirmed that the regulation of autophagy and renal fibrosis by HDHW was associated with IGF-1-mediated activation of the PI3K/Akt/mTOR pathway. In conclusion, our study showed that HDHW inhibited autophagy by upregulating IGF-1 expression, promoting the binding of IGF-1 to IGF-1R, and activating the PI3K/Akt/mTOR signaling pathway, thereby reducing renal fibrosis and protecting renal function. This study provides support for the application and further study of HDHW.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa