Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(12): 3785-3792, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497999

RESUMO

Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an "average effect" that explains the magnitude and spatial extension of luminescence enhancement.

2.
Opt Express ; 29(3): 4147-4158, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33771000

RESUMO

A highly sensitive fiberized hydrogen sensor based upon Mach-Zehnder interference (MZI) is experimentally demonstrated. The hydrogen sensor consists of an MZI realized by creating an air cavity inside the core of a half-pitch graded-index fiber (GIF) by use of femtosecond laser micromachining. Thermosensitive polymer was filled into the air cavity and cured by UV illumination. Subsequently, the external surface of the polymer-filled MZI was coated with Pt-loaded tungsten trioxide (WO3). The exothermic reaction occurs as Pt-loaded WO3 contacts the target of the sensing, i.e. hydrogen in the atmosphere, which leads to a significant local temperature rise on the external surface of the coated MZI sensor. The sensor exhibits a maximum sensitivity up to -1948.68 nm/% (vol %), when the hydrogen concentration increases from 0% to 0.8% at room temperature. Moreover, the sensor exhibits a rapid rising response time (hydrogen concentration increasing) of ∼38 s and falling response time (hydrogen concentration decreasing) of ∼15 s, respectively. Thanks to its small size, strong robustness, high accuracy and repeatability, the proposed in-fiber MZI hydrogen sensor will be a promising tool for hydrogen leakage tracing in many areas, such as safety production and hydrogen medical treatment.

3.
Opt Express ; 28(10): 14850-14858, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403519

RESUMO

A new optical fiber bend sensor is proposed and demonstrated based on a sandwich structure created by splicing a segment of twin core fiber (TCF) between two segments of single mode fibers (SMFs). One core of the TCF is aligned with the cores of two segments of SMFs. An incident beam is directed into the TCF by the lead-in SMF. Light couples back and forth between two cores. The bend sensing performance of the sensor is investigated by intensity-modulated method. The intensity of the operation wavelength is modulated by the change of refractive index and geometrical deformation in the bent TCF. Experimental results show such a bend sensor achieves sensitivity of +0.671 /m-1 and resolution of 0.003 m-1 in the range of 0 to 1.25 m-1. In addition, the sensitivity and bend measurement range can be flexibly adjusted through selection of the length of TCF and sensing configuration. As such, the proposed sensor can be further developed for large or small bend ranges measurement.

4.
Opt Lett ; 44(10): 2466-2469, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090708

RESUMO

A highly sensitive temperature sensor is proposed and demonstrated based on a UV-curable polymer-infiltrated Mach-Zehnder interferometer (MZI) created in a graded index fiber (GIF). The device was constructed by splicing a half-pitch GIF between two single-mode fibers and creating an inner air cavity in one lateral side of the GIF core by means of femtosecond laser micromachining. The air cavity and the residual GIF core functioned as two interference arms of the MZI. Moreover, the GIF was used as a miniature in-fiber collimator to reduce insertion loss of the air cavity. Experimental results show such an MZI device has a high refractive index (RI) sensitivity of 24611.54 nm/RIU (RI=1.545-1.565). Subsequently, thermo-sensitive polymer liquid was infiltrated into the air cavity, then cured with UV illumination, and annealed at 50°C for 12 h. The infiltrated MZI exhibits a high temperature sensitivity of -13.27 nm/°C. In addition, this MZI also has excellent thermal stability and repeatability, compact structure, low insertion loss, and high fringe visibility. As such, the proposed MZI could be developed for high-accuracy temperature measurements in many areas such as biomedical or oceanographic applications.

5.
Sensors (Basel) ; 19(2)2019 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-30669670

RESUMO

A simple vibration sensor is proposed and demonstrated based on an optical fiber Fabry-Perot interferometer (FPI) with an in-fiber collimator. The device was fabricated by splicing a quarter-pitch graded index fiber (GIF) with a section of a hollow-core fiber (HCF) interposed between single mode fibers (SMFs). The static displacement sensitivity of the FPI with an in-fiber collimator was 5.17 × 10-4 µm-1, whereas the maximum static displacement sensitivity of the device without collimator was 1.73 × 10-4 µm-1. Moreover, the vibration sensitivity of the FPI with the collimator was 60.22 mV/g at 100 Hz, which was significantly higher than the sensitivity of the FPI without collimator (11.09 mV/g at 100 Hz). The proposed FPI with an in-fiber collimator also exhibited a vibration sensitivity nearly one order of magnitude higher than the device without the collimator at frequencies ranging from 40 to 200 Hz. This low-cost FPI sensor is highly-sensitive, robust and easy to fabricate. It could potentially be used for vibration monitoring in remote and harsh environments.

6.
Opt Lett ; 43(24): 6009-6012, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547992

RESUMO

A compact dual-cavity Fabry-Perot interferometer (DC-FPI) sensor is proposed and demonstrated based on a hollow-core photonic bandgap fiber (HC-PBF) spliced with a hollow-core fiber (HCF). The HC-PBF, which has low transmission loss, was used as the first FPI cavity and also acted as a bridge between the lead-in single-mode fiber and the HCF. The HCF was used as the second FPI cavity and also acted as a micro gas inlet into the first FPI cavity. A DC-FPI sensor with different cavity lengths of 226 and 634 µm in the first FPI and the second FPI was created. Both gas pressures ranging from 0-10 MPa and temperatures ranging from 100-800°C were measured using the DC-FPI sensors together with a fast Fourier transform and phase-demodulation algorithm. Experimental results showed that the first FPI cavity was gas pressure sensitive but temperature insensitive, while the second FPI cavity was temperature sensitive but gas pressure insensitive. A high gas pressure sensitivity of 1.336 µm/MPa and a temperature sensitivity of 17 nm/°C were achieved in the DC-FPI sensor. Moreover, the cross sensitivity between the gas pressure and temperature was calculated to be ∼-15 Pa/°C and ∼0.3°C/MPa. The proposed DC-FPI sensors provide a promising candidate for the simultaneous measurement of high pressures and high temperatures at some precise locations.

7.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080692

RESUMO

High-accuracy temperature measurement plays a vital role in biomedical, oceanographic, and photovoltaic industries. Here, a highly sensitive temperature sensor is proposed and demonstrated based on cascaded polymer-infiltrated Mach-Zehnder interferometers (MZIs), operating near the dispersion turning point. The MZI was constructed by splicing a half-pitch graded index fiber (GIF) and two sections of single-mode fiber and creating an inner air cavity based on femtosecond laser micromachining. The UV-curable polymer-infiltrated air cavity functioned as one of the interference arms of MZI, and the residual GIF core functioned as the other. Two MZIs with different cavity lengths and infiltrated with the UV-curable polymers, having the refractive indexes on the different sides of the turning point, were created. Moreover, the effects of the length and the bending way of transmission SMF between the first and the second MZI were studied. As a result, the cascaded MZI temperature sensor exhibits a greatly enhanced temperature sensitivity of -24.86 nm/°C based on wavelength differential detection. The aforementioned result makes it promising for high-accuracy temperature measurements in biomedical, oceanographic, and photovoltaic applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa