Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(4): 2153-2161, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38244211

RESUMO

Nitrous oxide (N2O) has a detrimental impact on the greenhouse effect, and its efficient catalytic decomposition at low temperatures remains challenging. Herein, the cobalt-based high-entropy oxide with a spinel-type structure (Co-HEO) is successfully fabricated via a facile coprecipitation method for N2O catalytic decomposition. The obtained Co-HEO catalyst displays more remarkable catalytic performance and higher thermal stability compared with single and binary Co-based oxides, as the temperature of 90% N2O decomposition (T90) is 356 °C. A series of characterization results reveal that the synergistic effect of multiple elements enhances the reducibility and augments oxygen vacancy in the high-entropy system, thus boosting the activity of the Co-HEO catalyst. Moreover, density functional theory (DFT) calculations and the temperature-programmed surface reaction (TPSR) with isotope labeling demonstrate that N2O decomposition on the Co-HEO catalyst follows the Langmuir-Hinshelwood (L-H) mechanism with the promotion of abundant oxygen vacancies. This work provides a fundamental understanding of the synergistic catalytic effect in N2O decomposition and paves the way for the novel environmental catalytic applications of HEO.


Assuntos
Cobalto , Óxidos , Entropia , Óxidos/química , Cobalto/química , Oxigênio
2.
Angew Chem Int Ed Engl ; 63(16): e202400627, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38390644

RESUMO

Metal-modified catalysts have attracted extraordinary research attention in heterogeneous catalysis due to their enhanced geometric and electronic structures and outstanding catalytic performances. Silver (Ag) possesses necessary active sites for ethylene epoxidation, but the catalyst activity is usually sacrificed to obtain high selectivity towards ethylene oxide (EO). Herein, we report that using Al can help in tailoring the unoccupied 3d state of Ag on the MnO2 support through strong electronic metal-support interactions (EMSIs), overcoming the activity-selectivity trade-off for ethylene epoxidation and resulting in a very high ethylene conversion rate (~100 %) with 90 % selectivity for EO under mild conditions (170 °C and atmospheric pressure). Structural characterization and theoretical calculations revealed that the EMSIs obtained by the Al modification tailor the unoccupied 3d state of Ag, modulating the adsorption of ethylene (C2H4) and oxygen (O2) and facilitating EO desorption, resulting in high C2H4 conversion. Meanwhile, the increased number of positively charge Ag+ lowers the energy barrier for C2H4(ads) oxidation to produce oxametallacycle (OMC), inducing the unexpectedly high EO selectivity. Such an extraordinary electronic promotion provides new promising pathways for designing advanced metal catalysts with high activity and selectivity in selective oxidation reactions.

3.
Angew Chem Int Ed Engl ; 63(25): e202405863, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38589298

RESUMO

Cascade radical cyclization constitutes an atom- and step-economic route for rapid assembly of polycyclic molecular skeletons. Although an array of redox-active metal catalysts has recently shown robust applications in enabling various catalytic cascade radical processes, the use of free organic radical as the catalyst, which is capable of triggering strategically distinct cascades, has rarely been developed. Here, we disclosed that the benzimidazolium-based N-heterocyclic carbene (NHC)-boryl radical is capable of catalyzing cascade cyclization reactions in both intra- and intermolecular pathways, assembling [5,5] fused bicyclic and [6,6,6] fused tricyclic molecules, respectively. The catalytic reactions start with the chemo- and regioselective addition of the boryl radical catalyst to a tethered alkene or alkyne moiety, followed by either an intramolecular formal [3+2] or an intermolecular [2+2+2] cycloaddition process to construct bicyclo[3.3.0]octane or tetrahydrophenanthridine skeletons, respectively. Eventually, a ß-elimination occurs to release the boryl radical catalyst, completing a catalytic cycle. High to excellent diastereoselectivity is achieved in both catalytic reactions under substrate control.

4.
Chem Commun (Camb) ; 60(32): 4275-4289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566567

RESUMO

Organoboron compounds demonstrate diverse applications in the fields of organic synthesis, materials science, and medicinal chemistry. Compared to the conventional hydroboration reaction, radical hydroboration serves as an alternative approach for the synthesis of organoborons via different mechanisms. In radical hydroboration, a boryl radical is initially generated from homolytic cleavage of a B-H or a B-B bond, which is then added to an unsaturated double bond to deliver a carbon radical. Subsequent hydrogen atom transfer or reduction of the carbon radical to form a carbanion followed by protonation gave the final product. Over the past few years, numerous efforts have been made for efficient synthesis of boryl radicals and the expansion of substrate scope of the radical hydroboration reaction. Here, we discuss the recent advancement of radical hydroboration and its associated mechanisms. Numerous radical hydroboration strategies employing N-heterocyclic carbene borane, bis(pinacolato)diboron and pinacolborane as the boron source were illustrated. Thermochemical, photochemical and electrochemical strategies for the generation of boryl radicals were also discussed in detail.

5.
J Pharm Pharmacol ; 76(7): 842-850, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38600790

RESUMO

BACKGROUND: Ischemic stroke (IS) is a detrimental neurological disease and IS lacks valuable methods to recover body function. Indobufen (IND) could alleviate IS. However, the possible mechanism remains undefined. METHODS: SH-SY5Y cells were cultured under the oxygen-glucose deprivation/reoxygenation (OGD/R) environment and then were treated with small interfering RNA (siRNA) of NRF2 and ATG5. The influence of various concentrations of IND (50 µM, 100 µM, 200 µM, and 400 µM) was determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide. Levels of superoxide dismutase (SOD) and malonaldehyde (MDA) were examined by ELISA. Reactive oxygen species (ROS) production was determined by DCFH-DA staining. The protein levels of LC3II/LC3I, Beclin1, p62, NRF2, and ATG5 were detected by western blot. RESULTS: IND increased cell viability, while depressed the rate of apoptosis in SH-SY5Y cells of OGD/R environment. IND inhibited autophagy by suppressing the levels of LC3II/LC3I, Beclin1 protein, and increasing p62 protein expression in SH-SY5Y cells of OGD/R environment. IND limited the contents of ROS and MDA, while amplifying the activity of SOD in SH-SY5Y cells with OGD/R exposure. IND also promoted NRF2 expression in OGD/R environment. CONCLUSION: IND could inhibit autophagy, oxidative stress, and apoptosis in SH-SY5Y cells with OGD/R exposure, further alleviating IS injury by regulating transcription factor NRF2 and inhibiting ATG5 expression.


Assuntos
Apoptose , Proteína 5 Relacionada à Autofagia , Autofagia , Sobrevivência Celular , AVC Isquêmico , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Espécies Reativas de Oxigênio , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 5 Relacionada à Autofagia/metabolismo , Humanos , AVC Isquêmico/tratamento farmacológico , AVC Isquêmico/metabolismo , Autofagia/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Superóxido Dismutase/metabolismo , Fármacos Neuroprotetores/farmacologia , Malondialdeído/metabolismo , RNA Interferente Pequeno/farmacologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38204268

RESUMO

BACKGROUND: Chromosomal rearrangements involving the Mixed lineage leukemia (MLL) gene are observed in acute leukemia (AL) patients, which have poor prognosis, especially in infants. Hence, there is still a challenge to develop other effective agents to treat AL with MLL rearrangements (MLLr). MLL has been shown to rearrange with partner genes, of which the most frequently observed are AF4 and AF9. Moreover, AL is characterized by a differentiation blockage resulting in the accumulation of immature cells. An ent-kaurene diterpenoid compound, Jiyuan Oridonin A (JOA), has been shown to reduce the viability of AML cells by differentiation. METHODS: We aimed to evaluate the effect of JOA on the growth and differentiation of AL cells (SEM, JURKAT and MV4-11) including cells with MLLr-AF4 by cell proliferation assay, colony formation assay, cell cycle analysis, cell apoptosis analysis, measurement of cell surface antigens, cell morphology, mRNA-sequencing analysis, quantitative Real-time PCR and Western blotting analysis. RESULTS: Our findings demonstrated that the proliferation of AL cells including cells with MLLr-AF4 was significantly suppressed by JOA, which induced cell differentiation followed by G0/G1 cell cycle withdrawal. Moreover, JOA-mediated cell differentiation was likely due to activation of G-CSFR in MV4-11 cells. CONCLUSION: Our results suggest that JOA may be considered a promising anti-leukemia compound to develop to surmount the differentiation block in AL patients.

7.
World J Gastroenterol ; 30(29): 3488-3510, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39156502

RESUMO

BACKGROUND: Hyperuricemia (HUA) is a public health concern that needs to be solved urgently. The lyophilized powder of Poecilobdella manillensis has been shown to significantly alleviate HUA; however, its underlying metabolic regulation remains unclear. AIM: To explore the underlying mechanisms of Poecilobdella manillensis in HUA based on modulation of the gut microbiota and host metabolism. METHODS: A mouse model of rapid HUA was established using a high-purine diet and potassium oxonate injections. The mice received oral drugs or saline. Additionally, 16S rRNA sequencing and ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry-based untargeted metabolomics were performed to identify changes in the microbiome and host metabolome, respectively. The levels of uric acid transporters and epithelial tight junction proteins in the renal and intestinal tissues were analyzed using an enzyme-linked immunosorbent assay. RESULTS: The protein extract of Poecilobdella manillensis lyophilized powder (49 mg/kg) showed an enhanced anti-trioxypurine ability than that of allopurinol (5 mg/kg) (P < 0.05). A total of nine bacterial genera were identified to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which included the genera of Prevotella, Delftia, Dialister, Akkermansia, Lactococcus, Escherichia_Shigella, Enterococcus, and Bacteroides. Furthermore, 22 metabolites in the serum were found to be closely related to the anti-trioxypurine activity of Poecilobdella manillensis powder, which correlated to the Kyoto Encyclopedia of Genes and Genomes pathways of cysteine and methionine metabolism, sphingolipid metabolism, galactose metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. Correlation analysis found that changes in the gut microbiota were significantly related to these metabolites. CONCLUSION: The proteins in Poecilobdella manillensis powder were effective for HUA. Mechanistically, they are associated with improvements in gut microbiota dysbiosis and the regulation of sphingolipid and galactose metabolism.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Hiperuricemia , Sanguessugas , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/sangue , Hiperuricemia/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Masculino , Sanguessugas/microbiologia , Ácido Úrico/sangue , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/microbiologia , Metabolômica/métodos , RNA Ribossômico 16S/genética , Humanos , Disbiose , Metaboloma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa