Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Environ Res ; 216(Pt 4): 114777, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370818

RESUMO

Facile fabrication of porous carbon materials from waste halogenated plastic is highly attractive but frequently hampered due to potential release of halogenated organic pollutants. In this study, a novel type of carbon hybrid was tentatively synthesized from a real-world halogenated plastic as an inexpensive carbon source by sub/supercritical carbon dioxide carbonization technique. It was found that halogen-free carbon carrier was advantageously synthesized through carbonization of halogenated plastic without using catalysts due to zip depolymerization, random chain cracking and free radical reactions induced by sub/supercritical carbon dioxide technique. Exhibiting with more abundant functional groups including C-O, CO groups than pyrolytic carbon carrier, the derived carbon carrier demonstrated excellent performance in selective recovery of lithium from cathode powder with highest recovery efficiency of 93.6%. Mechanism study indicated that cathode powder was transformed into low-valence states of transition metals/metal oxides and released lithium as lithium carbonate due to collapse of oxygen framework via carbothermic reduction. This work provides an applicable and green process for synthesis of alternative carbon carrier from waste halogenated plastic and its application as carbothermic reductant in lithium recovery.


Assuntos
Dióxido de Carbono , Lítio , Fontes de Energia Elétrica , Reciclagem , Plásticos , Pós
2.
J Environ Manage ; 219: 332-339, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29753241

RESUMO

In the current study, the possibility of incorporating various industrial wastes into fireproofing materials was investigated. It was found that the newly developed materials showed excellent air sealing and fireproofing performance, with air permeability coefficients 3 to 4 orders of magnitude smaller than traditional fire prevention materials. The influence of different parameters on the air permeability was investigated, and the air sealing mechanisms were clarified through microstructure analysis. In addition, the workability and mechanical properties of the fireproofing materials for practical application in coal mine were studied. The new materials derived from industrial wastes had a compact and monolithic structure, and the excellent air tightness could be attributed to the pozzolanic activity of the industrial wastes and the film-forming property of organic polymers. Among the industrial wastes examined, a special coal fly ash with high pozzolanic activity and little free calcium oxide derived the best product with air permeability coefficient, tensile strength and breaking elongation of 4.17 × 10-8 m2/s, 2.14 MPa and 48.90%, respectively. This study provides an economical, environmentally friendly and promising approach for industrial wastes recycling.


Assuntos
Cinza de Carvão , Resíduos Industriais , Reciclagem , Carvão Mineral , Materiais de Construção
3.
Environ Technol ; 35(21-24): 2774-80, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176480

RESUMO

The current study was carried out to develop a novel process, namely chloride volatilization procedure for lead recovery from waste cathode ray tube (CRT) funnel glass. In the recovery system, the glass powder was first compressed into cylindrical pellet homogeneously with chlorinating agents, and then subjected to thermal treatment for solid-phase reaction. In this case, lead could be easily released from the silicon oxide network of the glass and it was recovered in the form of PbCl2. It was found that CaCl2 was the most effective chlorinating agent, and the optimum operation temperature, holding time and system pressure were 1000 °C, 2 h, 600 ± 50 Pa, respectively. The evaporated PbCl2could be easily recovered by a cooling device. The evaporation ratio of lead from waste CRT was 99.1% and the purity of the recovered PbCl2product was 97.0%. The reaction routes and lead recovery mechanisms of the process were identified. This study provides an efficient and practical process for waste CRT funnel glass detoxification and recycling.


Assuntos
Cloreto de Cálcio/química , Tubo de Raio Catódico , Resíduo Eletrônico , Poluentes Ambientais/química , Chumbo/química , Reciclagem/métodos , Vidro , Halogenação , Temperatura Alta , Pressão , Volatilização
4.
Environ Technol ; 35(17-20): 2556-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25145211

RESUMO

This study was carried out to develop a cost-effective and practicable sorbent for application in abrupt perfluorooctane sulphonate (PFOS) pollution accidents. The main merit of this work was that a waste material, namely construction and demolition (C&D) waste, was employed as a raw base material for the sorbent synthesis. The waste material underwent alkaline fusion-hydrothermal synthesis and a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) modification process to form a CTAB-modified sorbent (CMCDSS). Experimental results showed that PFOS concentrations and solution pH had significant effect on the PFOS sorption on construction and demolition waste synthesized sorbent (CDSS) and CMCDSS (using 0.2CMCDSS as representative). PFOS could be effectively and rapidly adsorbed on CMCDSS, and sorption equilibrium was achieved within 2.5 h. The sorption amounts of PFOS on CMCDSSs enhanced along with the increase in CTAB loading amounts. Moreover, the CMCDSS can be applied effectively under acidic condition at pH 2-6 and various removal mechanisms were clarified at different sorption conditions. Accordingly, this work developed a novel and applicable material for dealing with abrupt environmental PFOS contamination accidents.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Compostos de Cetrimônio/química , Fluorocarbonos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/química , Cetrimônio , Fluorocarbonos/análise , Fluorocarbonos/química , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
5.
Waste Manag ; 187: 1-10, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968859

RESUMO

Disposal of electrolytes from waste lithium-ion batteries (LIBs) has gained much more attention with the growing application of LIBs, yet handling spent electrolyte is challengeable due to its high toxicity and the lack of established methods. In this study, a novel two-stage thermal process was developed for treating residual electrolytes resulted from spent lithium-ion batteries. The conversion of fluorophosphate and organic matter in oily electrolyte during low-temperature rotation distillation was investigated. The distribution and migration of the concentrated electrolytes were studied and the corresponding reaction mechanisms were elucidated. Additionally, the influence of alkali on the fixation of fluorine and phosphate was further examined. The results indicated that hydrolyzed carbonate esters and lithium in the electrolyte could combine to form Li2CO3 and the hydrolysable hexafluorophosphate was proven to be stable in the concentrated electrolyte (45 rpm/85 °C, 30 min). It was found that CO2, CO, CH4, and H2 were the primary pyrolysis gases, while the pyrolysis oil consisted of extremely flammable substances formed by the dissociation and recombination of chemical bonds in the electrolyte solvent. After pyrolysis at 300 °C, fluorine and phosphate were present in the form of sodium fluoride and sodium phosphate. The stability of the residue was enhanced, and the environmental risk was reduced. By adding alkali (KOH/Ca(OH)2, 20 %), hexafluorophosphate in the electrolyte was transformed into fluoride and phosphate in the residue, thereby reducing the device's corrosion from fluorine-containing gas. This study provides a viable approach for managing the residual electrolyte in the waste lithium battery recovery process.


Assuntos
Fontes de Energia Elétrica , Eletrólitos , Lítio , Lítio/química , Eletrólitos/química , Resíduo Eletrônico/análise , Pirólise , Gerenciamento de Resíduos/métodos
6.
Environ Technol ; 34(13-16): 2241-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350478

RESUMO

The disposal of construction and demolition (C&D) waste has become a serious problem in China due to the rapid increase of Chinese construction industry in recent years. In the present study, typical C&D waste was employed for ceramsite fabrication so as to find a new way for its effective recycling. A novel process was developed for manufacturing high-quality porous ceramsite according to the special chemical composition and properties of C&D waste. Most importantly, a unique bloating agent was developed for the porous structure formation since it was difficult to obtain a suitable porous structure using traditional bloating agents. The effects of processing parameters such as sintering temperature, heating rate and soaking time were investigated, and the bloating mechanism for ceramsite was discussed. The C&D waste ceramsite (CDWC), with high-intensity, low density and homogeneous mechanical properties, was much more suitable for application in the construction field. This study provides a practical process for efficient recycling of the rapidly increasing quantities of C&D waste.


Assuntos
Materiais de Construção , Resíduos Industriais , Reciclagem/métodos , Silicatos de Alumínio , Argila , Metais Pesados , Porosidade , Temperatura
7.
Environ Technol ; 44(11): 1613-1625, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34792432

RESUMO

Hypersaline wastewater is a typical industrial wastewater produced by iron and steel metallurgy, food material processing and other industries. Aiming at a waste liquid produced by mechanical vapour recompression evaporation and concentration in Tianjin coastal industrial zone, an environment-friendly supercritical water oxidation technology was used to efficiently remove the high-content organic matter in the hypersaline wastewater concentrate (HWC). A comparison of the degradation effects of various oxidants in the supercritical state showed that hydrogen peroxide (H2O2) could be used as a suitable agent for processing the HWC. The reaction parameters were systematically optimised by single-factor experiment and response surface design. The degradation mechanism and reaction characteristics were analyzed using gas chromatography mass spectrometry. Solid residues were characterised by field emission scanning electron microscope. The results indicated that when the dosage of hydrogen peroxide was 6.39%, the reaction temperature was 380°C, the reaction time was about 90 min and the optimal total organic carbon removal rate was 96.22%. Furthermore, it was found that hydroxyl radicals produced by hydrogen peroxide initiated the bond breaking and ring-opening reactions in organic matter, which eventually degraded organic matter into water and carbon dioxide.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Peróxido de Hidrogênio/química , Compostos Orgânicos , Oxirredução , Água , Poluentes Químicos da Água/química
8.
Waste Manag ; 153: 13-19, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029533

RESUMO

The present study reports a sequential, non-acid process for effective recovery of copper and precious metals from mobile phone printed circuit boards. In this process, gold and silver were first enriched during the synthesis process of cuprous chloride and then leached by thiosulfate method. Results indicated that the distribution of gold and silver in the liquid and solid phases during the synthesis of cuprous chloride process was affected by the [Cu]/[Cu2+] ratio. Enrichment of gold and silver in the residue after the cuprous chloride synthesis could be achieved by the adjusting the [Cu]/[Cu2+] ratio. The silver and gold leaching rates of the residue after cuprous chloride synthesis (93.8 % silver and 99 % gold) were much higher than those of the raw PCB sample (27.0 % silver and 14.2 % gold) under the same conditions. This process has the advantages of high leaching efficiency, high leaching rate and avoiding the use of HNO3 or aqua regia commonly used for copper, gold and silver recovery. Thus, this study offers a promising and environmentally friendly method for recovering valuable metals from e-waste.


Assuntos
Telefone Celular , Resíduo Eletrônico , Cobre/química , Resíduo Eletrônico/análise , Ouro/química , Reciclagem/métodos , Prata/química , Tiossulfatos/química
9.
J Hazard Mater ; 432: 128746, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339831

RESUMO

Upcycling of waste plastics as functional materials is a new approach for synthesizing low-cost and durable adsorbents with zwitterionic property. Herein, a facile process for recycling blending waste plastics to fabricate zwitterionic plastic-g-hydrogel (ZPH) for simultaneous adsorbing cationic and anionic heavy metals was developed. ZPH possessed high affinities for cations and anions in both acid and alkaline conditions owing to its zwitterionic property, and the maximum adsorption capacities of Pb2+, Cd2+, Ba2+, and Cr(VI) (Cr2O72-) were 132.13, 85.58, 69.92 and 85.15 mg/g, respectively. Mechanism study indicated the incompatibility of blending plastics was skillfully overcome through the crosslinking between sodium alginate (SA)/chitosan (CTS) and plastics. Cations were adsorbed onto ZPH via electrostatic interaction, cation exchange and coordination interactions with Cl/N/O-containing groups. Furthermore, the reduction of Cr(VI) to Cr(III) was another important path for ZPH to capture anionic Cr2O72-, and subsequently Cr(III) was adsorbed via coordination interaction and cation exchange. Moreover, the regeneration experiment showed ZPH possessed excellent reusability and stable structure. Accordingly, this research provides a profitable approach for recycling blending plastics, and ZPH has potentials for industrial application in wastewater treatment or contaminated site remediation with complex heavy metals pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Ânions , Cátions/química , Hidrogéis/química , Metais Pesados/química , Plásticos , Poluentes Químicos da Água/química
10.
Waste Manag ; 124: 283-292, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33640668

RESUMO

Recycling of spent Li-ion batteries is crucial for achieving sustainable development of battery industry. Current recycling processes mainly focus on valuable metals but less attention has been paid to spent graphite, which generally ends up as secondary waste. In this study, a process for preparing graphene and recovering Li in anode as a by-product from spent graphite was developed. The key point was to re-charge the spent LIBs to generate lithium graphite intercalation compounds. The lithium graphite intercalation compounds were then subjected to a hydrolysis procedure and graphene could be produced through ultrasonic treatment via the expansion/micro-explosion mechanism. Experimental results demonstrated that 1-4 layered graphene could be efficiently produced when spent Li-ion batteries with beyond 50% capacity were re-charged. The prepared graphene showed high quantity containing few defects (ID/IG = 0.33, C/O = 13.2 by energy dispersive spectroscopy and C/O = 8.8 by X-ray photoelectron spectroscopy). In addition, Li was simultaneously recovered in the form of battery-grade lithium carbonate in the above process. Economic analysis indicated that the graphene production cost was extremely low ($540/ton) compared to that of commercial graphene.


Assuntos
Grafite , Lítio , Fontes de Energia Elétrica , Eletrodos , Reciclagem
11.
J Hazard Mater ; 395: 122614, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302882

RESUMO

Recovery of high-content and valuable elements including phosphorus (P) is critical for recycling of spent LiFePO4 battery, but P recovery is challengeable due to the poor solubility of lithium phosphate and iron phosphate. This study compared two strategies to recover P by adopting sulfide salt to induce P dissolution, i.e., recovery of P directly from LiFePO4, and step-by-step recovery of Li then P. The results revealed that the second strategy was more efficient because of the higher recovering efficiency and selectivity. Accordingly, an acid-free process to recover P was successfully demonstrated. Li-recovery efficiency of 97.5 % was reached at a leaching time of 65 min, and nearly 100 % P-recovery efficiency was reached at 5 h. Mechanism analysis revealed that the transforming of delithiated LiFePO4 crystal to NaFeS2 was mainly responsible for P dissolution. Thermodynamic analysis and density functional theory calculation further proved the transformation reaction, and a stepwise-transformation mechanism was proposed. In addition, P was reclaimed in the form of soluble phosphate salts. The process is especially appealing due to its environmental and economic benefits for recycling spent LiFePO4 batteries.

12.
J Hazard Mater ; 382: 121140, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31518770

RESUMO

Electronic display housing plastics contain a high amount of halogenated compounds such as brominated flame retardants (BFRs) and polyvinyl chloride (PVC). Compared with moderate critical conditions of conventional eco-friendly sub/supercritical carbon dioxide (Sc-CO2), a novel and sustainable procedure by using improved Sc-CO2 was developed for disposal of this type of plastic. The main merit of the process was that complex halogen-containing plastics were safely disposed and halogen-free products were recycled without using catalysts or additives. It was discovered that additive BFRs were initially extracted by Sc-CO2 technique and then it decomposed accompanied with PVC rapidly to form HBr and HCl, which could be separated by traditional bromine stripping techniques from seawater. Based on response surface methodology (RSM), the maximum debromination and dechlorination efficiencies were achieved at 99.51% and 99.12% respectively. After the treatment, halogen-free products such as solid carbon materials and organic chemical feedstocks were obtained. Mechanism study elucidated that free radicals reaction involving chain initiation, growth and termination induced the polymer decomposition to form these products. This study provides an applicable and green approach for disposal and recovery of halogen-containing plastics.

13.
J Hazard Mater ; 386: 121633, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31740301

RESUMO

Impurity Fe could severely damage the performance of resynthesized cathode material, and therefore, LiFePO4 cathode should be removed from the mixed spent LIBs for materials recycling. In this research, a non-hydrometallurgy method has been developed to separate LiFePO4 by selectively peeling-off the LiFePO4 cathode material and the peeling-off process was well explained by theoretical modeling. The peeling-off efficiency of LiFePO4 was approximate 100 % and that of LiMn2O4/LiCoO2/Li(Ni, Co, Al)O2/Li(Ni, Mn, Co)O2 was only 0.08 %. That is, the separating selectivity was 1250. Mechanism study revealed that the peeling-off was achieved through selective destruction of the LiFePO4 crystal and the matrix of polyvinylidene fluoride (PVDF) binder. Particularly, the crystal structure of LiFePO4 was firstly destructed by sulfide, thus LiFePO4 particles were detached from the matrix of PVDF binder. Then, the PVDF binder without LiFePO4 particles filling were more susceptible to be brittlely peeled off by the micro-explosion force of hydrogen from the reaction of Al foil with water due to the weakened mechanical strength. The process is suitable for recycling varied types of spent LIBs, having a strong potential for industrial application.

14.
J Hazard Mater ; 161(2-3): 1109-13, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18534747

RESUMO

Cathode ray tube (CRT) is the first and foremost problem that must be solved in electronic waste disposal, and the key of which lies in the detoxification and reutilization of lead-contained funnel glass. In this study, a novel and effective process for funnel glass of dismantled CRT treatment was developed. The key point of the process was to recover metallic lead from the funnel glass and to prepare foam glass synchronously. Experimental results showed that lead recovery rate increased first with the increase of temperature, carbon adding amount, and holding time, then reached a plateau value, but pressure was on the contrary. The optimum temperature, pressure, carbon adding amount and holding time for lead recovery were 1000 degrees C, 1000 Pa, 5% and 4h, respectively, and the maximum lead recovery rate was 98.6%. In the pyrovacuum process, lead in the funnel glass was firstly detached and changed to PbO, then reduced and evaporated, and was recovered in the form of pure metal with a purity of 99.3%. The residue porous glass was environmentally acceptable for construction application.


Assuntos
Vidro , Chumbo/análise , Eliminação de Resíduos/métodos , Carbono/química , Terminais de Computador , Conservação dos Recursos Naturais , Materiais de Construção , Eletrônica , Desenho de Equipamento , Metais/química , Microscopia Eletrônica de Varredura , Pressão , Televisão , Temperatura , Vácuo
15.
Waste Manag ; 29(3): 1114-21, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18990557

RESUMO

Incineration has become the main mechanism for hospital waste (HW) disposal in China after the outbreak of Severe Acute Respiratory Syndrome (SARS) in 2003. However, little information is available on the chemical properties of the resulting ashes. In the present study, 22HW ash samples, including 14 samples of bottom ash and eight samples of fly ash, were collected from four typical HW incineration plants located across China. Chemical analysis indicated that the HW ashes contained large amounts of metal salts of Al, Ca, Fe, K, Mg, Na with a concentration range of 1.8-315gkg(-1). Furthermore, the ashes contained high concentrations of heavy metals such as Ag, As, Ba, Bi, Cd, Cr, Cu, Mn, Ni, Pb, Ti, Sb, Sn, Sr, Zn with a vast range of 1.1-121,411mgkg(-1), with higher concentrations found in the fly ash samples. Sequential extraction results showed that Ba, Cr, Ni and Sn are present in the residual fraction, while Cd existed in the exchangeable and carbonate fractions. As, Mn, Zn existed in the Fe-Mn oxide fraction, Pb was present in the Fe-Mn oxide and residual fractions, and Cu was present in the organic matter fraction. Furthermore, toxicity characteristic leaching procedure (TCLP) results indicated that leached amounts of Cd, Cu and Pb from almost all fly ash samples exceeded the USEPA regulated levels. A comparison between the HW ashes and municipal solid waste (MSW) ash showed that both HW bottom ash and fly ash contained higher concentrations of Ag, As, Bi, Cd, Cr, Cu, Pb, Ti, and Zn. This research provides critical information for appropriate HW incineration ash management plans.


Assuntos
Carbono , Incineração , Eliminação de Resíduos de Serviços de Saúde , Metais Pesados , Material Particulado , Carbono/análise , Carbono/química , China , Cidades , Cinza de Carvão , Geografia , Metais Pesados/análise , Metais Pesados/química , Material Particulado/análise , Material Particulado/química , Medição de Risco
16.
J Hazard Mater ; 375: 43-51, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31039463

RESUMO

Recycling of spent lithium-ion batteries (LIBs) has aroused extensive attentions with the expanding demand of electric vehicles. Two considerable challenges of LIBs recycling were separating electrode materials from metallic foils and reclaiming hazardous electrolyte. In the current study, an environmentally benign process was developed to recovery electrode materials and hazardous electrolyte. The main merits were that no strong acid or alkali was applied in the process, and the electrode materials were reclaimed in flaky form. A special complex aqueous peeling agent, namely exfoliating and extracting solution (AEES) was manufactured and applied in the process. The results indicated that cathode material could be exfoliated from Al foil by weakening the mechanical interlocking force and Coulomb force between cathode materials and foils. Ethylene carbonate (EC) and propylene carbonate (PC) could be extracted from electrodes and separators and recovered via distillation. LiPF6 could be precipitated from EC and PC and recovered via filtration. The conditions could be precisely controlled by optimizing the concentration of AEES. The recovery efficiencies of electrolyte, Al foil, Cu foil and electrode materials were 95.6%, 99.0%, 100% and near 100%, respectively. The process efficiently avoided infiltration of impurities into the electrode materials and is environmentally friendly for industrial application.

17.
Sci Total Environ ; 397(1-3): 24-30, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18440054

RESUMO

Waste ashes from three types of hospital waste (HW) incinerators, built in SARS (Severe Acute Respiratory Syndrome) period and currently running in China, were collected and polycyclic aromatic hydrocarbons (PAH) properties in the ashes were investigated. The mean summation PAH levels in the waste ashes varied widely from 4.16 mg kg(-1) to 198.92 mg kg(-1), and the mean amounts of carcinogenic PAHs ranged from 0.74 to 96.77 mg kg(-1), exceeding the limits regulated by several countries. Among the three types of incinerators, two medium-scale incinerators generated relatively high levels of PAHs (mean summation PAH 22.50 and 198.92 mg kg(-1)) compared to small-scale and large-scale incinerators (mean summation PAH 4.16 and 16.43 mg kg(-1)). Bottom ashes were dominated by low molecular weight PAHs (LM-PAH; containing two- to three-ringed PAHs) and medium molecular weight PAHs (MM-PAH; containing four-ringed PAHs), while fly ashes were abundant in MM-PAH and high molecular weight PAHs (HM-PAH, containing five- to six-ringed PAHs). Statistical analysis indicated that there was a positive relationship (R2=0.88) between organic matter and total PAHs thus it has the potential to be used as an indicator for PAHs in HW ashes. Moreover, it was found that PAHs in the ashes correlated highly with some metallic elements either positively (e.g. Fe, Ti, Mg) or negatively (Ca), indicating that these elements might promote or prevent PAH formation during HW combustion. Although bottom ash resulted from HW incinerators has not been classified as hazardous material, the results of this study indicated that this type of waste ash contained high levels of PAHs thus need special treatment before landfill.


Assuntos
Carcinógenos/análise , Hospitais , Incineração/métodos , Eliminação de Resíduos de Serviços de Saúde/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , China , Metais Pesados/análise
18.
J Hazard Mater ; 159(2-3): 313-8, 2008 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-18359154

RESUMO

A new adsorbent was developed from waste ash resulting from municipal solid waste and coal co-combustion power plant. The ash was firstly subjected to hydrothermal treatment for zeolite synthesis, and then modified with iron(II) ions by agitation (ISZ) or ultrasonic (UISZ) treatment. The effect of operating factors such as pH, contact time, initial As(V) concentration and adsorbent dosage was investigated and the optimum operating conditions were established. The adsorption capacity for As(V) onto UISZ and ISZ were 13.04 and 5.37 mg g(-1), respectively. The adsorption isotherm data could be well described by Langmuir isotherm model. The optimum initial pH values for As(V) removal were 2.5 and 2.5-10.0 by ISZ and UISZ, respectively. The results indicated that ultrasound treatment scattered the particles of the adsorbent uniformly, which was in favor of impregnating iron ions into pores. Leaching of hazardous elements from the used adsorbents was very low. Accordingly, it is believed that the adsorbents developed in this study are environmentally acceptable and industrially applicable for utilization in arsenic-containing wastewater treatment.


Assuntos
Arsenicais/isolamento & purificação , Carbono/química , Carvão Mineral/análise , Material Particulado/química , Eliminação de Resíduos/métodos , Zeolitas/química , Adsorção , Centrifugação , Cinza de Carvão , Concentração de Íons de Hidrogênio , Ferro/química , Microscopia Eletrônica de Varredura , Soluções , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Ultrassom , Água , Difração de Raios X , Zeolitas/análise
19.
J Hazard Mater ; 158(2-3): 465-70, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18329796

RESUMO

Medical waste (MW) ashes from different types of MW incinerators were examined to detect the characteristics and environmental impact of rare earth elements (REEs). The results showed that total REE contents in the ash samples ranged from 10.2 to 78.9 mg/kg. REEs in bottom ash were apparently higher than those in fly ash. Average REE contents in the ashes followed the sequence of Ce>La>Nd>Y>Gd>Pr>Sm>Dy>Er>Yb>Ho>Eu>Tb>Lu>Tm. Some of the elements, such as Sm, Dy, Ho, Er, Yb in the ash samples were in normal or nearly normal distribution, but Y, La, Ce, Pr, Nd, Eu, Gd, Tb, Tm, Lu were not normally distributed, indicating some of the ash samples were enriched with these elements. Crust-normalized REE patterns indicated that two types of the MW ashes were obviously enriched with Gd and La. Sequential extraction results showed that REEs in the ash mainly presented as residual fraction, while exchangeable and carbonate fractions were relatively low. DTPA- and EDTA-extraction tests indicated that REEs in the MW ashes were generally in low bioavailability.


Assuntos
Incineração , Resíduos de Serviços de Saúde/economia , Metais Terras Raras/química , China , Controle de Qualidade
20.
J Hazard Mater ; 153(1-2): 382-8, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17913357

RESUMO

The solid by-product from power plant fueled with municipal solid waste and coal was used as a raw material to synthesize zeolite by fusion-hydrothermal process in order to effectively use this type of waste material. The effects of treatment conditions, including NaOH/ash ratio, operating temperature and hydrothermal reaction time, were investigated, and the product was applied to simulated wastewater treatment. The optimal conditions for zeolite X synthesis were: NaOH/ash ratio=1.2:1, fusion temperature=550 degrees C, crystallization time=6-10 h and crystallization temperature=90 degrees C. In the synthesis process, it was found that zeolite X tended to transform into zeolite HS when NaOH/ash ratio was 1.8 or higher, crystallization time was 14-18 h, operating temperature was 130 degrees C or higher. The CEC value, BET surface area and pore volume for the synthesized product at optimal conditions were 250 cmol kg(-1), 249 m(2) g(-1) and 0.46 cm(3) g(-1) respectively, higher than coal fly ash based zeolite. Furthermore, when applied to Zn(2+) contaminated wastewater treatment, the synthesized product presented larger adsorption capacity and bond energy than coal fly ash based zeolite, and the adsorption isotherm data could be well described by Langmuir and Freundlich isotherm models. These results demonstrated that the special type of co-combustion ash from power plant is suitable for synthesizing high quality zeolite, and the products are suitable for heavy metal removal from wastewater.


Assuntos
Carbono/química , Carvão Mineral , Incineração , Material Particulado/química , Centrais Elétricas , Zeolitas/química , Adsorção , Cinza de Carvão , Fluorescência , Troca Iônica , Microscopia Eletrônica de Varredura , Hidróxido de Sódio/química , Propriedades de Superfície , Temperatura , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Difração de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa