Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
BMC Vet Res ; 20(1): 191, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734611

RESUMO

BACKGROUND: Many proteins of African swine fever virus (ASFV, such as p72, p54, p30, CD2v, K205R) have been successfully expressed and characterized. However, there are few reports on the DP96R protein of ASFV, which is the virulence protein of ASFV and plays an important role in the process of host infection and invasion of ASFV. RESULTS: Firstly, the prokaryotic expression vector of DP96R gene was constructed, the prokaryotic system was used to induce the expression of DP96R protein, and monoclonal antibody was prepared by immunizing mice. Four monoclonal cells of DP96R protein were obtained by three ELISA screening and two sub-cloning; the titer of ascites antibody was up to 1:500,000, and the monoclonal antibody could specifically recognize DP96R protein. Finally, the subtypes of the four strains of monoclonal antibodies were identified and the minimum epitopes recognized by them were determined. CONCLUSION: Monoclonal antibody against ASFV DP96R protein was successfully prepared and identified, which lays a foundation for further exploration of the structure and function of DP96R protein and ASFV diagnostic technology.


Assuntos
Vírus da Febre Suína Africana , Anticorpos Monoclonais , Epitopos , Camundongos Endogâmicos BALB C , Proteínas Virais , Vírus da Febre Suína Africana/imunologia , Anticorpos Monoclonais/imunologia , Animais , Epitopos/imunologia , Camundongos , Proteínas Virais/imunologia , Anticorpos Antivirais/imunologia , Suínos , Febre Suína Africana/imunologia , Febre Suína Africana/virologia , Feminino
2.
J Med Virol ; 95(3): e28591, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807585

RESUMO

Proteins UL31 and UL34 encoded by alphaherpesvirus are critical for viral primary envelopment and nuclear egress. We report here that pseudorabies virus (PRV), a useful model for research on herpesvirus pathogenesis, uses N-myc downstream regulated 1 (NDRG1) to assist the nuclear import of UL31 and UL34. PRV promoted NDRG1 expression through DNA damage-induced P53 activation, which was beneficial to viral proliferation. PRV induced the nuclear translocation of NDRG1, and its deficiency resulted in the cytosolic retention of UL31 and UL34. Therefore, NDRG1 assisted the nuclear import of UL31 and UL34. Furthermore, in the absence of the nuclear localization signal (NLS), UL31 could still translocate to the nucleus, and NDRG1 lacked an NLS, thus suggesting the existence of other mediators for the nuclear import of UL31 and UL34. We demonstrated that heat shock cognate protein 70 (HSC70) was the key factor in this process. UL31 and UL34 interacted with the N-terminal domain of NDRG1 and the C-terminal domain of NDRG1 bound to HSC70. Replenishment of HSC70ΔNLS in HSC70-knockdown cells, or interference in importin α expression, abolished the nuclear translocation of UL31, UL34, and NDRG1. These results indicated that NDRG1 employs HSC70 to facilitate viral proliferation in the nuclear import of PRV UL31 and UL34.


Assuntos
Herpesvirus Suídeo 1 , Proteínas Nucleares , Animais , Humanos , Transporte Ativo do Núcleo Celular , Proteínas Nucleares/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Núcleo Celular/metabolismo , Herpesvirus Suídeo 1/genética
3.
PLoS Pathog ; 16(3): e1008429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32208449

RESUMO

Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases.


Assuntos
Proteínas de Ciclo Celular/imunologia , Dano ao DNA/imunologia , Vírus de DNA/imunologia , Imunidade Inata , Proteínas Nucleares/imunologia , Vírus de RNA/imunologia , Fatores de Transcrição/imunologia , Células A549 , Animais , Chlorocebus aethiops , Infecções por Vírus de DNA/imunologia , Cães , Feminino , Células HEK293 , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Células RAW 264.7 , Infecções por Vírus de RNA/imunologia , Suínos , Células Vero
4.
Ecotoxicol Environ Saf ; 248: 114291, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395652

RESUMO

Deoxynivalenol (DON) is universally detected trichothecene in most cereal commodities, which is considered as a major hazardous material for human and animal health. Intestine is the most vulnerable organ with higher concentration of DON than other organs, owing to the first defense barrier function to exogenous substances. However, the underling mechanisms about DON-induced intestinal toxicity remain poorly understood. Here, DON poisoning models of IPEC-J2 cells was established to explore adverse effect and the potential mechanism of DON-induced enterotoxicity. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Results showed that DON exposure destroyed IPEC-J2 cells morphology. Intestinal epithelial barrier injury was caused by DON with increasing LDH release, decreasing cell viability as well decreasing tight junction protein expressions (Occludin, N-Cad, ZO-1, Claudin-1 and Claudin-3). Moreover, DON caused mitochondrial dysfunction by opening mitochondrial permeability transition pore and eliminating mitochondrial membrane potential. DON exposure upregulated protein and mRNA expression of mitochondrial fission factors (Drp1, Fis1, MIEF1 and MFF) and mitophagy factors (PINK1, Parkin and LC3), downregulated mitochondrial fusion factors (Mfn1, Mfn2, except OPA1), resulting in mitochondrial dynamics imbalance and mitophagy. Overall, these findings suggested that DON induced tight junction dysfunction in IPEC-J2 cells was related to mitochondrial dynamics-mediated mitophagy.


Assuntos
Dinâmica Mitocondrial , Mitofagia , Humanos , Suínos , Animais , Junções Íntimas , Ocludina , Fatores de Alongamento de Peptídeos , Proteínas Mitocondriais
5.
J Virol ; 93(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31189711

RESUMO

Autophagy maintains cellular homeostasis by degrading organelles, proteins, and lipids in lysosomes. Autophagy is involved in the innate and adaptive immune responses to a variety of pathogens. Some viruses can hijack host autophagy to enhance their replication. However, the role of autophagy in porcine reproductive and respiratory syndrome virus (PRRSV) infection is unclear. Here, we show that N-Myc downstream-regulated gene 1 (NDRG1) deficiency induced autophagy, which facilitated PRRSV replication by regulating lipid metabolism. NDRG1 mRNA is expressed ubiquitously in most porcine tissues and most strongly in white adipose tissue. PRRSV infection downregulated the expression of NDRG1 mRNA and protein, while NDRG1 deficiency contributed to PRRSV RNA replication and progeny virus assembly. NDRG1 deficiency reduced the number of intracellular lipid droplets (LDs), but the expression levels of key genes in lipogenesis and lipolysis were not altered. Our results also show that NDRG1 deficiency promoted autophagy and increased the subsequent yields of hydrolyzed free fatty acids (FFAs). The reduced LD numbers, increased FFA levels, and enhanced PRRSV replication were abrogated in the presence of an autophagy inhibitor. Overall, our findings suggest that NDRG1 plays a negative role in PRRSV replication by suppressing autophagy and LD degradation.IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), an enveloped single-positive-stranded RNA virus, causes acute respiratory distress in piglets and reproductive failure in sows. It has led to tremendous economic losses in the swine industry worldwide since it was first documented in the late 1980s. Vaccination is currently the major strategy used to control the disease. However, conventional vaccines and other strategies do not provide satisfactory or sustainable prevention. Therefore, safe and effective strategies to control PRRSV are urgently required. The significance of our research is that we demonstrate a previously unreported relationship between PRRSV, NDRG1, and lipophagy in the context of viral infection. Furthermore, our data point to a new role for NDRG1 in autophagy and lipid metabolism. Thus, NDRG1 and lipophagy will have significant implications for understanding PRRSV pathogenesis for developing new therapeutics.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Regulação para Baixo , Ácidos Graxos não Esterificados/química , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Animais , Autofagia , Células HEK293 , Humanos , Masculino , Filogenia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Suínos , Replicação Viral
6.
J Virol ; 92(12)2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618647

RESUMO

Once infected by viruses, cells can detect pathogen-associated molecular patterns (PAMPs) on viral nucleic acid by host pattern recognition receptors (PRRs) to initiate the antiviral response. Porcine reproductive and respiratory syndrome virus (PRRSV) is the causative agent of porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failure in sows and respiratory diseases in pigs of different ages. To date, the sensing mechanism of PRRSV has not been elucidated. Here, we reported that the pseudoknot region residing in the 3' untranslated regions (UTR) of the PRRSV genome, which has been proposed to regulate RNA synthesis and virus replication, was sensed as nonself by retinoic acid-inducible gene I (RIG-I) and Toll-like receptor 3 (TLR3) and strongly induced type I interferons (IFNs) and interferon-stimulated genes (ISGs) in porcine alveolar macrophages (PAMs). The interaction between the two stem-loops inside the pseudoknot structure was sufficient for IFN induction, since disruption of the pseudoknot interaction powerfully dampened the IFN induction. Furthermore, transfection of the 3' UTR pseudoknot transcripts in PAMs inhibited PRRSV replication in vitro Importantly, the predicted similar structures of other arterivirus members, including equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), and simian hemorrhagic fever virus (SHFV), also displayed strong IFN induction activities. Together, in this work we identified an innate recognition mechanism by which the PRRSV 3' UTR pseudoknot region served as PAMPs of arteriviruses and activated innate immune signaling to produce IFNs that inhibit virus replication. All of these results provide novel insights into innate immune recognition during virus infection.IMPORTANCE PRRS is the most common viral disease in the pork industry. It is caused by PRRSV, a positive single-stranded RNA virus, whose infection often leads to persistent infection. To date, it is not yet clear how PRRSV is recognized by the host and what is the exact mechanism of IFN induction. Here, we investigated the nature of PAMPs on PRRSV and the associated PRRs. We found that the 3' UTR pseudoknot region of PRRSV, which has been proposed to regulate viral RNA synthesis, could act as PAMPs recognized by RIG-I and TLR3 to induce type I IFN production to suppress PRRSV infection. This report is the first detailed description of pattern recognition for PRRSV, which is important in understanding the antiviral response of arteriviruses, especially PRRSV, and extends our knowledge on virus recognition.


Assuntos
Proteína DEAD-box 58/genética , Moléculas com Motivos Associados a Patógenos/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Dobramento de RNA/genética , Receptor 3 Toll-Like/genética , Regiões 3' não Traduzidas/genética , Animais , Linhagem Celular , Chlorocebus aethiops , Genoma Viral/genética , Helicase IFIH1 Induzida por Interferon/genética , Interferon-alfa/imunologia , Interferon beta/imunologia , Sequências Repetidas Invertidas/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Síndrome Respiratória e Reprodutiva Suína/imunologia , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Interferência de RNA , RNA Interferente Pequeno/genética , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Receptor 7 Toll-Like/genética
7.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881653

RESUMO

MicroRNAs (miRNAs) play an important role in the regulation of immune responses. Previous studies have indicated that dysregulating the miRNAs leads to the immunosuppression of porcine reproductive and respiratory syndrome virus (PRRSV). However, it is not clear how PRRSV regulates the expression of host miRNA, which may lead to immune escape or promote the replication of the virus. The present work suggests that PRRSV upregulated the expression of miR-373 through elevating the expression of specificity protein 1 (Sp1) in MARC-145 cells. Furthermore, this work demonstrated that miR-373 promoted the replication of PRRSV, since miR-373 was a novel negative miRNA for the production of beta interferon (IFN-ß) by targeting nuclear factor IA (NFIA), NFIB, interleukin-1 receptor-associated kinase 1 (IRAK1), IRAK4, and interferon regulatory factor 1 (IRF1). We also found that both NFIA and NFIB were novel proteins for inducing the production of IFN-ß, and both of them could inhibit the replication of PRRSV. In conclusion, PRRSV upregulated the expression of miR-373 by elevating the expression of Sp1 and hijacked the host miR-373 to promote the replication of PRRSV by negatively regulating the production of IFN-ß. IMPORTANCE: PRRSV causes one of the most economically devastating diseases of swine, and there is no effective method for controlling PRRSV. It is not clear how PRRSV inhibits the host's immune response and induces persistent infection. Previous studies have shown that PRRSV inhibited the production of type I IFN, and the treatment of type I IFN could efficiently inhibit the replication of PRRSV, so it will be helpful to design new methods of controlling PRRSV by understanding the molecular mechanism by which PRRSV modulated the production of IFN. The current work shows that miR-373, upregulated by PRRSV, promotes PRRSV replication, since miR-373 impaired the production of IFN-ß by targeting NFIA, NFIB, IRAK1, IRAK4, and IRF1, and both NFIA and NFIB were antiviral proteins to PRRSV. In conclusion, this paper revealed a novel mechanism of PRRSV that impaired the production of type I IFN by upregulating miR-373 expression in MARC-145 cells.


Assuntos
Interferon Tipo I/genética , MicroRNAs/genética , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Replicação Viral , Animais , Linhagem Celular , Regulação da Expressão Gênica , Interferon Tipo I/biossíntese , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Fator de Transcrição Sp1/metabolismo , Suínos , Proteínas Virais/metabolismo
8.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881657

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) has become an economically critical factor in swine industry since its worldwide spread in the 1990s. Infection by its causative agent, PRRS virus (PRRSV), was proven to be mediated by an indispensable receptor, porcine CD163 (pCD163), and the fifth scavenger receptor cysteine-rich domain (SRCR5) is essential for virus infection. However, the structural details and specific residues of pCD163 SRCR5 involved in infection have not been defined yet. In this study, we prepared recombinant pCD163 SRCR5 in Drosophila melanogaster Schneider 2 (S2) cells and determined its crystal structure at a high resolution of 2.0 Å. This structure includes a markedly long loop region and shows a special electrostatic potential, and these are significantly different from those of other members of the scavenger receptor cysteine-rich superfamily (SRCR-SF). Subsequently, we carried out structure-based mutational studies to identify that the arginine residue at position 561 (Arg561) in the long loop region is important for PRRSV infection. Further, we showed Arg561 probably takes effect on the binding of pCD163 to PRRSV during virus invasion. Altogether the current work provides the first view of the CD163 SRCR domain, expands our knowledge of the invasion mechanism of PRRSV, and supports a molecular basis for prevention and control of the virus. IMPORTANCE: PRRS has caused huge economic losses to pig farming. The syndrome is caused by PRRSV, and PRRSV infection has been shown to be mediated by host cell surface receptors. One of them, pCD163, is especially indispensable, and its SRCR5 domain has been further demonstrated to play a significant role in virus infection. However, its structural details and the residues involved in infection are unknown. In this study, we determined the crystal structure of pCD163 SRCR5 and then carried out site-directed mutational studies based on the crystal structure to elucidate which residue is important. Our work not only provides structural information on the CD163 SRCR domain for the first time but also indicates the molecular mechanism of PRRSV infection and lays a foundation for future applications in prevention and control of PRRS.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/química , Antígenos de Diferenciação Mielomonocítica/metabolismo , Modelos Moleculares , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Vírus da Síndrome Respiratória e Reprodutiva Suína , Domínios e Motivos de Interação entre Proteínas , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Linhagem Celular , Mutação , Síndrome Respiratória e Reprodutiva Suína/virologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/fisiologia , Ligação Proteica , Conformação Proteica , Receptores de Superfície Celular/genética , Eletricidade Estática , Relação Estrutura-Atividade , Suínos
9.
Nanomedicine ; 14(4): 1201-1212, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29501635

RESUMO

Inactivated transmissible gastroenteritis virus (TGEV) vaccines are widely used in swine herds in China. These are limited, however, by the need to elicit both humoral and cellular immunity, as well as the efficiency of adjuvants. In this study, a 70-nm nano silicon particle was applied with inactivated TGEV vaccine in mice, and its immune-enhancing effects and mechanism of action investigated. We found that nano silicon applied with inactivated TGEV vaccine induced high antibody titers, increase IL-6, TNF-α and IFN-γ expression, and stimulate CD3+ T cell proliferation with a high CD4+/CD8+ T lymphocyte ratio. Nano silicon could quickly activate innate and adaptive immunity by stimulating Toll-like receptor signaling pathways, indicating that the nano silicon adjuvant enhanced long-term humoral and early cellular immune responses when combined with inactivated TGEV vaccine. Nano silicon could be considered for use as an antigen- carrier and adjuvant for veterinary vaccines.


Assuntos
Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Silício/química , Vírus da Gastroenterite Transmissível/imunologia , Vacinas de DNA/imunologia , Vacinas de DNA/uso terapêutico , Adjuvantes Imunológicos , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática , Gastroenterite/imunologia , Gastroenterite/prevenção & controle , Interferon gama/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Suínos , Fator de Necrose Tumoral alfa/metabolismo
10.
J Gen Virol ; 98(5): 1097-1112, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28510513

RESUMO

In the last decade, numerous microRNAs (miRNAs) have been identified in diverse virus families, particularly in herpesviruses. Gallid alphaherpesvirus 2 (GaHV2) is a representative oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts, namely Marek's disease (MD). In the GaHV2 genome there are 26 mature miRNAs derived from 14 precursors assembled into three clusters, namely the Meq-cluster, Mid-cluster and LAT-cluster. Several GaHV2 miRNAs, especially those in the Meq-cluster (e.g. miR-M4-5p), have been demonstrated to be critical in MD pathogenesis and/or tumorigenesis. Interestingly the downstream Mid-cluster is regulated and transcribed by the same promoter as the Meq-cluster in the latent phase of the infection, but the role of these Mid-clustered miRNAs in GaHV2 biology remains unclear. We have generated the deletion mutants of the Mid-cluster and of its associated individual miRNAs in GX0101 virus, a very virulent GaHV2 strain, and demonstrated that the Mid-clustered miRNAs are not essential for virus replication. Using GaHV2-infected chickens as an animal model, we found that, compared with parental GX0101 virus, the individual deletion of miR-M31 decreased the mortality and gross tumour incidence of infected chickens while the deletion individually of miR-M1 or miR-M11 unexpectedly increased viral pathogenicity or oncogenicity, similarly to the deletion of the entire Mid-cluster region. More importantly, our data further confirm that miR-M11-5p, the miR-M11-derived mature miRNA, targets the viral oncogene meq and suppresses its expression in GaHV2 infection. We report here that members of the Mid-clustered miRNAs, miR-M31-3p and miR-M11-5p, potentially act either as oncogene or tumour suppressor in MD lymphomagenesis.


Assuntos
Carcinógenos , Genes Supressores de Tumor , Interações Hospedeiro-Patógeno , Linfoma de Células T , Mardivirus/fisiologia , Doença de Marek/complicações , MicroRNAs/metabolismo , Experimentação Animal , Animais , Carcinogênese , Deleção de Genes , Mardivirus/genética , Doença de Marek/patologia , MicroRNAs/genética , Análise de Sobrevida
11.
J Gen Virol ; 96(Pt 3): 637-649, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25502647

RESUMO

Marek's disease virus (MDV) is an important oncogenic alphaherpesvirus that induces rapid-onset T-cell lymphomas in its natural hosts. The Meq-clustered miRNAs encoded by MDV have been suggested to play potentially critical roles in the induction of lymphomas. Using the technique of bacterial artificial chromosome mutagenesis, we have presently constructed a series of specific miRNA-deleted mutants and demonstrate that these miRNAs are not essential for replication of MDV and have no effects on the early cytolytic or latent phases of the developing disease. However, compared to the parental GX0101, mortality of birds infected with the mutants GXΔmiR-M2, GXΔmiR-M3, GXΔmiR-M5, GXΔmiR-M9 and GXΔmiR-M12 was reduced from 100 % to 18 %, 30 %, 48 %, 24 % and 14 %, coupled with gross tumour incidence reduction from 28 % to 8 %, 4 %, 12 %, 8 % and 0 %, respectively. Our data confirm that except for mdv1-miR-M4, the other Meq-clustered miRNAs also play critical roles in MDV oncogenesis. Further work will be needed to elucidate the miRNA-mediated regulatory mechanisms that trigger the development of MD lymphomas.


Assuntos
Carcinogênese , Regulação Viral da Expressão Gênica , Herpesvirus Galináceo 2/metabolismo , MicroRNAs/metabolismo , Doenças das Aves Domésticas/virologia , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Linfoma/veterinária , Linfoma/virologia , Doença de Marek/patologia , Doença de Marek/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/patologia , RNA Viral/genética , RNA Viral/metabolismo
12.
Virus Genes ; 50(2): 245-52, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666057

RESUMO

In the past decade, a large number of microRNAs (miRNAs) have been identified in the viral genome of Gallid herpesvirus 2 (GaHV-2), which is historically known as Marek's disease virus type 1. The biological role of most GaHV-2 miRNAs remains unclear. In the present study, we have performed an overall gene expression profile of GaHV-2 miRNAs during the virus life cycle at each phase of the developing disease, a highly contagious, lymphoproliferative disorder, and neoplastic immunosuppressive disease of poultry known as the Marek's disease. According to their distinct in vivo expression patterns, the GaHV-2 miRNAs can be divided into three groups: 12 miRNAs in group I, including miR-M4-5p, displayed a typical expression pattern potentially correlated to the latent, late cytolytic, and/or the proliferative phases in the cycle of GaHV-2 pathogenesis; group II consisting of another 12 miRNAs with expression correlated to the early cytolytic and/or latent phases in GaHV-2's life cycle; while the other two miRNAs in group III showed no identical expression features. Our findings may provide meaningful clues in the search for further potential functions of viral miRNAs in GaHV-2 biology.


Assuntos
Herpesvirus Galináceo 2/genética , Linfoma/veterinária , Doença de Marek/virologia , MicroRNAs/genética , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Animais , Galinhas , Regulação Viral da Expressão Gênica , Herpesvirus Galináceo 2/fisiologia , Linfoma/virologia , MicroRNAs/metabolismo , RNA Viral/metabolismo , Transcriptoma
13.
Virus Genes ; 46(1): 170-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22945473

RESUMO

Since the first Chinese case report of Japanese encephalitis, Japanese encephalitis virus (JEV) has circulated in China for at least 60 years. Even though pigs play a critical role in the JEV transmission cycle information on the prevalence of JEV in pigs has not been investigated in China. As the central Chinese province of Henan has the largest human population in China, a history of serious JEV and is the largest pig producing province it was chosen for this study. We have found that currently natural infection with JEV in pigs and mosquitoes is prevalent and both genotypes 1 and 3 co-circulate in pigs and mosquitoes in central China. Phylogenetic analysis showed that all of the newly obtained pig-derived JEV isolates are more closely related to isolates from the 1950s to 1960s than to those recently isolated from humans and mosquitoes. Further analyses based on all the previous reported Chinese isolates indicates that presently genotype 3 JEV is the predominant genotype in pigs but genotype 1 JEV is emerging and spreading rapidly in recent years. Our study provides information for understanding the current epidemiology of JEV in China and suggests possible measures applicable to the further control of JEV.


Assuntos
Culicidae/virologia , Vírus da Encefalite Japonesa (Subgrupo)/classificação , Vírus da Encefalite Japonesa (Subgrupo)/genética , Encefalite Japonesa/veterinária , Suínos/virologia , Animais , China/epidemiologia , Vírus da Encefalite Japonesa (Subgrupo)/isolamento & purificação , Encefalite Japonesa/epidemiologia , Encefalite Japonesa/virologia , Genótipo , Epidemiologia Molecular , Filogenia
14.
Virus Genes ; 47(2): 282-91, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23813248

RESUMO

Marek's disease is a highly contagious, oncogenic, and immunosuppressive avian viral disease. Surveillance of newly registered Marek's disease virus (MDV) isolates is meaningful for revealing the potential factors involved in increased virulence. Presently, we have focused on the molecular characteristics of all available MDVs from China, including 17 new Henan isolates. Based on Meq, gE, and gI genes, we found that most Chinese isolates contain conserved amino acid point mutations in Meq, such as E(77), A(115), A(139), R(176), and A(217), compared to USA virulent MDVs. However, the 59-aa or 60-aa insertions are only found in a few mild MDVs rather than virulent MDVs in China. Further phylogenetic analysis has demonstrated that a different genotype of MDV has been prevalent in China, and for virulent MDVs, their recent evolution has possibly been geographically restricted. Our study has provided more detailed information regarding the field MDVs circulating in China.


Assuntos
Mardivirus/genética , Mardivirus/isolamento & purificação , Doença de Marek/virologia , Animais , Galinhas , China , Análise por Conglomerados , DNA Viral/química , DNA Viral/genética , Evolução Molecular , Mardivirus/classificação , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Filogenia , Mutação Puntual , Análise de Sequência de DNA , Proteínas Virais/genética
15.
Sci China Life Sci ; 66(2): 251-268, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617590

RESUMO

Over the past two decades, numerous non-coding RNAs (ncRNAs) have been identified in different biological systems including virology, especially in large DNA viruses such as herpesviruses. As a representative oncogenic alphaherpesvirus, Marek's disease virus (MDV) causes an important immunosuppressive and rapid-onset neoplastic disease of poultry, namely Marek's disease (MD). Vaccinations can efficiently prevent the onset of MD lymphomas and other clinical disease, often heralded as the first successful example of vaccination-based control of cancer. MDV infection is also an excellent model for research into virally-induced tumorigenesis. Recently, great progress has been made in understanding the functions of ncRNAs in MD biology. Herein, we give a review of the discovery and identification of MDV-encoded viral miRNAs, focusing on the genomics, expression profiles, and emerging critical roles of MDV-1 miRNAs as oncogenic miRNAs (oncomiRs) or tumor suppressor genes involved in the induction of MD lymphomas. We also described the involvements of host cellular miRNAs, lincRNAs, and circRNAs participating in MDV life cycle, pathogenesis, and/or tumorigenesis. The prospects, strategies, and new techniques such as the CRISPR/Cas9-based gene editing applicable for further investigation into the ncRNA-mediated regulatory mechanisms in MDV pathogenesis/oncogenesis were also discussed, together with the possibilities of future studies on antiviral therapy and the development of new efficient MD vaccines.


Assuntos
Herpesvirus Galináceo 2 , Linfoma , Doença de Marek , MicroRNAs , Animais , Transformação Celular Neoplásica , Galinhas/genética , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/metabolismo , Doença de Marek/genética , MicroRNAs/genética , MicroRNAs/metabolismo
16.
Viruses ; 15(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37112797

RESUMO

Marek's disease (MD) caused by pathogenic Marek's disease virus type 1 (MDV-1) is one of the most important neoplastic diseases of poultry. MDV-1-encoded unique Meq protein is the major oncoprotein and the availability of Meq-specific monoclonal antibodies (mAbs) is crucial for revealing MDV pathogenesis/oncogenesis. Using synthesized polypeptides from conserved hydrophilic regions of the Meq protein as immunogens, together with hybridoma technology and primary screening by cross immunofluorescence assay (IFA) on Meq-deleted MDV-1 viruses generated by CRISPR/Cas9-gene editing, a total of five positive hybridomas were generated. Four of these hybridomas, namely 2A9, 5A7, 7F9 and 8G11, were further confirmed to secrete specific antibodies against Meq as confirmed by the IFA staining of 293T cells overexpressing Meq. Confocal microscopic analysis of cells stained with these antibodies confirmed the nuclear localization of Meq in MDV-infected CEF cells and MDV-transformed MSB-1 cells. Furthermore, two mAb hybridoma clones, 2A9-B12 and 8G11-B2 derived from 2A9 and 8G11, respectively, displayed high specificity for Meq proteins of MDV-1 strains with diverse virulence. Our data presented here, using synthesized polypeptide immunization combined with cross IFA staining on CRISPR/Cas9 gene-edited viruses, has provided a new efficient approach for future generation of specific mAbs against viral proteins.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Doenças das Aves Domésticas , Animais , Edição de Genes , Sistemas CRISPR-Cas , Anticorpos Monoclonais/metabolismo , Herpesvirus Galináceo 2/genética , Proteínas Oncogênicas/metabolismo , Galinhas , Proteínas Oncogênicas Virais/genética
17.
Viruses ; 14(9)2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36146851

RESUMO

Marek's disease virus (MDV) is an important oncogenic α-herpesvirus that induces Marek's disease (MD), characterized by severe immunosuppression and rapid-onset T-cell lymphomas in its natural chicken hosts. Historically, MD is regarded as an ideal biomedical model for studying virally induced cancers. Monoclonal antibodies (mAbs) against viral or host antigenic epitopes are crucial for virology research, especially in the exploration of gene functions, clinical therapy, and the development of diagnostic reagents. Utilizing the CRISPR/Cas9-based gene-editing technology, we produced a pp38-deleted MDV-1 mutant-GX0101Δpp38-and used it for the rapid screening and identification of pp38-specific mAbs from a pool of MDV-specific antibodies from 34 hybridomas. The cross-staining of parental and mutated MDV plaques with hybridoma supernatants was first performed by immunofluorescence assay (IFA). Four monoclonal hybridomas-namely, 4F9, 31G7, 34F2, and 35G9-were demonstrated to secrete specific antibodies against MDV-1's pp38 protein, which was further confirmed by IFA staining and confocal analysis. Further experiments using Western blotting, immunoprecipitation (IP), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and immunohistochemistry (IHC) analysis demonstrated that the pp38-specific mAb 31G7 has high specificity and wide application potential for further research in MD biology. To the best of our knowledge, this is the first demonstration of the use of CRISPR/Cas9-based gene-editing technology for efficient screening and identification of mAbs against a specific viral protein, and provides a meaningful reference for the future production of antibodies against other viruses-especially for large DNA viruses such as herpesviruses.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Animais , Anticorpos Monoclonais , Antígenos Virais , Sistemas CRISPR-Cas , Galinhas , Cromatografia Líquida , Epitopos/genética , Herpesvirus Galináceo 2/genética , Espectrometria de Massas em Tandem , Tecnologia , Proteínas Virais/genética
18.
Animals (Basel) ; 12(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36359059

RESUMO

African swine fever (ASF), caused by African swine fever virus (ASFV), is a highly contagious and fatal disease found in swine. However, the viral proteins and mechanisms responsible for immune evasion are poorly understood, which has severely hindered the development of vaccines. This review mainly focuses on studies involving the innate antiviral immune response of the host and summarizes the latest studies on ASFV genes involved in interferon (IFN) signaling and inflammatory responses. We analyzed the effects of candidate viral proteins on ASFV infection, replication and pathogenicity and identified potential molecular targets for novel ASFV vaccines. These efforts will contribute to the construction of novel vaccines and wonder therapeutics for ASF.

19.
Artigo em Inglês | MEDLINE | ID: mdl-36515889

RESUMO

The gut microbiota plays an important role in intestinal immune system development and in driving inflammation. Antibiotic administration for therapeutic purposes causes an imbalance in the gut microbiota. Antimicrobial peptides can regulate the gut microbiota and maintain intestinal homeostasis. The aim of this study was to investigate the anti-inflammatory effects and regulation of the gut microbiota by the orally administered antimicrobial peptide mastoparan X (MPX). In this study, Escherichia coli was used to induce intestinal inflammation, and the results showed that MPX+ E. coli alleviated weight loss and intestinal pathological changes in necropsy specimens of E. coli-infected mice. MPX+ E. coli reduced the serum levels of the inflammation-related proteins interleukin-2, interleukin-6, tumour necrosis factor-α, myeloperoxidase, and lactate dehydrogenase on days 7 and 28. Furthermore, MPX+ E. coli increased the length of villi and reduced the infiltration of inflammatory cells into the jejunum and colon post infection. Scanning electron microscopy and transmission electron microscopy results showed that MPX could improve the morphology of jejunum villi and microvilli and increase tight junction protein levels. 16S rRNA sequencing analysis of caecal content samples showed that the species diversity and richness were lower in the E. coli-infected group. At the genus level, MPX+ E. coli significantly reduced the abundance of Bacteroidales and Alistipes and enhanced the relative abundance of Muribaculaceae. Alpha-diversity analyses (Shannon index) showed that MPX significantly increased the microbial diversity of mice. Overall, this study is the first to investigate the effects of oral administration of MPX on intestinal inflammation and the gut microbiota, providing a new perspective regarding the prevention of enteritis and maintenance of intestinal homeostasis.

20.
Viruses ; 14(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016273

RESUMO

In recent years, outbreaks of Marek's disease (MD) have been frequently reported in vaccinated chicken flocks in China. Herein, we have demonstrated that four Marek's disease virus (MDV) isolates, HN502, HN302, HN304, and HN101, are all pathogenic and oncogenic to hosts. Outstandingly, the HN302 strain induced 100% MD incidence, 54.84% mortality, and 87.10% tumor incidence, together with extensive atrophy of immune organs. Pathotyping of HN302 was performed in comparison to a standard very virulent (vv) MDV strain Md5. We found that both CVI988 and HVT vaccines significantly reduced morbidity and mortality induced by HN302 or Md5 strains, but the protection indices (PIs) provided by these two vaccines against HN302 were significantly lower (27.03%) or lower (33.33%) than that against Md5, which showed PIs of 59.89% and 54.29%, respectively. These data suggested that HN302 possesses a significant higher virulence than Md5 and at least could be designated as a vvMDV strain. Together with our previous phylogenetic analysis on MDV-1 meq genes, we have presently suggested HN302 to be a typical highly virulent MDV variant belonging to an independent Chinese branch. To our knowledge, this is the first report to provide convincible evidence to identify a pathogenic MDV variant strain with a higher virulence than Md5 in China, which may have emerged and circulating in poultry farms in China for a long time and involved in the recent MD outbreaks.


Assuntos
Herpesvirus Galináceo 2 , Doença de Marek , Doenças das Aves Domésticas , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa