RESUMO
BACKGROUND: The KCNQ1+KCNE1 (IKs) potassium channel plays a crucial role in cardiac adaptation to stress, in which ß-adrenergic stimulation phosphorylates the IKs channel through the cyclic adenosine monophosphate (cAMP)/PKA (protein kinase A) pathway. Phosphorylation increases the channel current and accelerates repolarization to adapt to an increased heart rate. Variants in KCNQ1 can cause long-QT syndrome type 1 (LQT1), and those with defective cAMP effects predispose patients to the highest risk of cardiac arrest and sudden death. However, the molecular connection between IKs channel phosphorylation and channel function, as well as why high-risk LQT1 mutations lose cAMP sensitivity, remain unclear. METHODS: Regular patch clamp and voltage clamp fluorometry techniques were utilized to record pore opening and voltage sensor movement of wild-type and mutant KCNQ1/IKs channels. The clinical phenotypic penetrance of each LQT1 mutation was analyzed as a metric for assessing their clinical risk. The patient-specific-induced pluripotent stem-cell model was used to test mechanistic findings in physiological conditions. RESULTS: By systematically elucidating mechanisms of a series of LQT1 variants that lack cAMP sensitivity, we identified molecular determinants of IKs channel regulation by phosphorylation. These key residues are distributed across the N-terminus of KCNQ1 extending to the central pore region of IKs. We refer to this pattern as the IKs channel PKA phosphorylation axis. Next, by examining LQT1 variants from clinical databases containing 10 579 LQT1 carriers, we found that the distribution of the most high-penetrance LQT1 variants extends across the IKs channel PKA phosphorylation axis, demonstrating its clinical relevance. Furthermore, we found that a small molecule, ML277, which binds at the center of the phosphorylation axis, rescues the defective cAMP effects of multiple high-risk LQT1 variants. This finding was then tested in high-risk patient-specific induced pluripotent stem cell-derived cardiomyocytes, where ML277 remarkably alleviates the beating abnormalities. CONCLUSIONS: Our findings not only elucidate the molecular mechanism of PKA-dependent IKs channel phosphorylation but also provide an effective antiarrhythmic strategy for patients with high-risk LQT1 variants.
Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Células-Tronco Pluripotentes Induzidas , Canal de Potássio KCNQ1 , Humanos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fosforilação , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Mutação , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Células HEK293 , Canais de Potássio de Abertura Dependente da Tensão da MembranaRESUMO
BACKGROUND: The long-term survival benefit of immune checkpoint inhibitors (ICIs) in neoadjuvant and adjuvant settings is unclear for colorectal cancers (CRC) and gastric cancers (GC) with deficiency of mismatch repair (dMMR) or microsatellite instability-high (MSI-H). METHODS: This retrospective study enrolled patients with dMMR/MSI-H CRC and GC who received at least one dose of neoadjuvant ICIs (neoadjuvant cohort, NAC) or adjuvant ICIs (adjuvant cohort, AC) at 17 centers in China. Patients with stage IV disease were also eligible if all tumor lesions were radically resectable. RESULTS: In NAC (n = 124), objective response rates were 75.7% and 55.4%, respectively, in CRC and GC, and pathological complete response rates were 73.4% and 47.7%, respectively. The 3-year disease-free survival (DFS) and overall survival (OS) rates were 96% (95%CI 90-100%) and 100% for CRC (median follow-up [mFU] 29.4 months), respectively, and were 84% (72-96%) and 93% (85-100%) for GC (mFU 33.0 months), respectively. In AC (n = 48), the 3-year DFS and OS rates were 94% (84-100%) and 100% for CRC (mFU 35.5 months), respectively, and were 92% (82-100%) and 96% (88-100%) for GC (mFU 40.4 months), respectively. Among the seven patients with distant relapse, four received dual blockade of PD1 and CTLA4 combined with or without chemo- and targeted drugs, with three partial response and one progressive disease. CONCLUSION: With a relatively long follow-up, this study demonstrated that neoadjuvant and adjuvant ICIs might be both associated with promising DFS and OS in dMMR/MSI-H CRC and GC, which should be confirmed in further randomized clinical trials.
Assuntos
Neoplasias Colorretais , Inibidores de Checkpoint Imunológico , Instabilidade de Microssatélites , Terapia Neoadjuvante , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/mortalidade , Neoplasias Gástricas/patologia , Feminino , Inibidores de Checkpoint Imunológico/uso terapêutico , Masculino , Terapia Neoadjuvante/métodos , Pessoa de Meia-Idade , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Estudos Retrospectivos , Idoso , Adulto , Reparo de Erro de Pareamento de DNA , Quimioterapia Adjuvante/métodos , SeguimentosRESUMO
In pursuit of high energy density, lithium metal batteries (LMBs) are undoubtedly the best choice. However, leakage and inevitable dendrite growth in liquid electrolytes seriously hinder its practical application. Solid/quasi-solid state electrolytes have emerged as an answer to solve the above issues. Especially, polymer electrolytes with excellent interface compatibility, high flexibility, and ease of machining have become a research hotspot for LMBs. Nevertheless, the interface contact between polymer electrolyte and inorganic electrode materials and the low ionic conductivity restrict its development. On account of these, in situ polymerized polymer electrolyte is proposed. Polymer solid electrolytes produced through in situ polymerization promote robust interface contact between the electrolyte and electrode while simplifying the preparation steps. This review summarized the latest research progress in in situ polymerized solid electrolytes for LMBs. These electrolytes were divided into three parts according to their polymerization methods: thermally induced polymerization, chemical initiator polymerization, ionizing radiation polymerization, and so on. Furthermore, we concluded the major challenges and future trends of in situ polymerized solid electrolytes for LMBs. It's hoped that this review will provide meaningful guidance on designing high-performance polymer solid electrolytes for LMBs.
RESUMO
Smart wearable devices are extensively utilized across diverse domains due to their inherent advantages of flexibility, portability, and real-time monitoring. Among these, flexible sensors demonstrate exceptional pliability and malleability, making them a prominent focus in wearable electronics research. However, the implementation of flexible wearable sensors often entails intricate and time-consuming processes, leading to high costs, which hinder the advancement of the entire field. Here, we report a pressure and proximity sensor based on oxidized laser-induced graphene (oxidized LIG) as a dielectric layer sandwiched by patterned LIG electrodes, which is characterized by high speed and cost-effectiveness. It is found that in the low-frequency range of fewer than 0.1 kHz, the relative dielectric constant of the oxidized LIG layer reaches an order of magnitude of 104. The pressure mode of this bimodal capacitive sensor is capable of detecting pressures within the range of 1.34 Pa to 800 Pa, with a response time of several hundred milliseconds. The proximity mode involves the application of stimulation using an acrylic probe, which demonstrates a detection range from 0.05 mm to 37.8 mm. Additionally, it has a rapid response time of approximately 100 ms, ensuring consistent signal variations throughout both the approach and withdrawal phases. The sensor fabrication method proposed in this project effectively minimizes expenses and accelerates the preparation cycle through precise control of laser processing parameters to shape the electrode-dielectric layer-electrode within a single substrate material. Based on their exceptional combined performance, our pressure and proximity sensors exhibit significant potential in practical applications such as motion monitoring and distance detection.
RESUMO
In this study, a cationic amphiphilic self-assembling peptide (SAP) Z23 was designed, and a simple bisphenol a (BPA) sensor, based on SAP Z23/multiwalled carbon nanotubes (Z23/MWCNTs) composite, was successfully fabricated on the surface of a glassy carbon electrode (GCE). The composite material was formed by π-π stacking interaction between the aromatic group on the hydrophobic side of Z23 and the side-wall of MWCNTs, with the charged hydrophilic group of Z23 exposed. During the electrocatalytic process of BPA, a synergistic effect was observed between Z23 and MWCNTs. The current response of the sensor based on composite material was 3.24 times that of the MWCNTs-modified electrode, which was much higher than that of the peptide-based electrode. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions affecting the analytical performance of the modified electrode. Under optimal conditions, the linear range of the sensor was from 10 nM to 100 µM by amperometric measurement with sensitivity and limit of detection (LOD) at 6.569 µAµM-1cm-2 and 1.28 nM (S/N = 3), respectively. Consequently, the sensor has excellent electrochemical performance and is easy to fabricate, making it a good prospect in the field of electrochemical detection in the future.
Assuntos
Compostos Benzidrílicos , Nanocompostos , Nanotubos de Carbono , Fenóis , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Limite de Detecção , Nanocompostos/química , EletrodosRESUMO
In this work, silver nanoparticles (AgNPs)/reduced graphene oxide (rGO) nanocomposites were electrodeposited on glassy carbon electrodes (GCE) to construct electrochemical sensors for the detection of hydrogen peroxide (H2O2) and dopamine (DA). The AgNPs were synthesized on graphene oxide (GO) by the hydrothermal method, followed by the reduction of the GO during the electrodeposition process, resulting in the formation of the nanocomposites on the surface of the electrodes. The generation of AgNPs on the graphene sheets was verified by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The AgNPs/rGO/GCE showed a linear response to H2O2 in the range of 5 µM to 620 µM, with a sensitivity of 49 µA mM-1cm-2 and a limit of detection (LOD) of 3.19 µA. The linear response of the AgNPs/rGO/GCE to DA ranged from 1 µM to 276 µM, the sensitivity was 7.86 µA mM-1cm-2, and the LOD was 0.18 µM. Furthermore, DA and H2O2 were detected simultaneously in the same solution without interferences, and the sensors displayed good stability over time. The preparation method for the sensors is relatively eco-friendly, convenient, and efficient, exhibiting great potential for sensitive detection of DA and H2O2.
RESUMO
Conductive hydrogels have been widely used in soft robotics, as well as skin-attached and implantable bioelectronic devices. Among the candidates of conductive fillers, conductive polymers have become popular due to their intrinsic conductivity, high biocompatibility, and mechanical flexibility. However, it is still a challenge to construct conductive polymer-incorporated hydrogels with a good performance using a facile method. Herein, we present a simple method for the one-pot preparation of conductive polymer-incorporated hydrogels involving rapid photocuring of the hydrogel template followed by slow in situ polymerization of pyrrole. Due to the use of a milder oxidant, hydrogen peroxide, for polypyrrole synthesis, the photocuring of the hydrogel template and the growing of polypyrrole proceeded in an orderly manner, making it possible to prepare conductive polymer-incorporated hydrogels in one pot. The preparation process is facile and extensible. Moreover, the obtained hydrogels exhibit a series of properties suitable for biomedical strain sensors, including good conductivity (2.49 mS/cm), high stretchability (>200%), and a low Young's modulus (~30 kPa) that is compatible with human skin.
Assuntos
Condutividade Elétrica , Hidrogéis , Polímeros , Pirróis , Pirróis/química , Hidrogéis/química , Polímeros/química , Humanos , Técnicas Biossensoriais/métodos , Módulo de Elasticidade , Movimento (Física) , Peróxido de Hidrogênio/químicaRESUMO
A 70-year-old man had radical surgery for colon cancer one year before the symptoms of memory loss and decreasing cognitive function. Subsequent magnetic resonance imaging revealed a brain mass, which was surgically resected and confirmed to be metastatic intestinal adenocarcinoma. Immunohistochemistry of the primary tumor and brain metastasis showed mismatch repair deficiency. The patient received adjuvant chemotherapy after surgery. However, the brain metastasis relapsed one month after the last chemotherapy. Genetic testing on the resected colon tumor samples confirmed microsatellite instability-high with a high tumor mutation burden by 77.7 muts/Mb. The patient was subsequently treated with programmed death-1 (PD-1) monoclonal antibody pembrolizumab (keytruda). The brain metastatic lesions were completely shrunk, and a complete clinical response was achieved.
Assuntos
Adenocarcinoma , Antineoplásicos Imunológicos , Neoplasias Encefálicas , Neoplasias do Colo , Neoplasias Colorretais , Síndromes Neoplásicas Hereditárias , Masculino , Humanos , Idoso , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Mutação , Antineoplásicos Imunológicos/uso terapêuticoRESUMO
An interferometric fiber-optic gyroscope (IFOG) demodulates a rotation signal via interferometric light intensity. However, the working environments of IFOGs typically involve great uncertainty. Fluctuations in temperature, air pressure, electromagnetic field, and the power system all cause the power of the superluminescent diode (SLD) light source to fluctuate as well. In this invited paper, we studied the effects of SLD power fluctuation on the dynamic and static performance characteristics of a gyro system through the use of a light-power feedback loop. Fluctuations of 0.5 mA, 1 mA, and 5 mA in the SLD source entering the IFOG caused zero-bias stability to be 69, 135, and 679 times worse. We established an effective method to monitor power fluctuations of SLD light sources and to compensate for their effects without increasing hardware complexity or system cost. In brief, we established a real-time power-sensing and -compensating system. Experimental results showed that for every 0.1 mA increase in the fluctuation amplitude of the driving current, the zero-bias stability became 4 to 7 times worse, which could be reduced about 95% through the use of SLD power compensation.
RESUMO
The performance of a gyroscope is directly affected by the fluctuations in the light source power (LSP) in an interferometric fiber-optic gyroscope (IFOG). Therefore, it is important to compensate for fluctuations in the LSP. When the feedback phase generated by the step wave completely cancels the Sagnac phase in real-time, the error signal of the gyroscope is linearly related to the differential signal of the LSP, otherwise, the error signal of the gyroscope is uncertain. Herein, we present two compensation methods to compensate for the error of the gyroscope when the error is uncertain, which are double period modulation (DPM) and triple period modulation (TPM). Compared with the TPM, DPM has better performance, but it increases the requirements for the circuit. TPM has lower requirements for the circuit and is more suitable for small fiber- coil applications. The experimental results show that, when the frequency of the LSP fluctuation is relatively low (1 kHz and 2 kHz), DPM and TPM do not differ significantly in terms of performance; both of them can achieve an improvement of about 95% in bias stability. When the frequency of the LSP fluctuation is relatively high (4 kHz, 8 kHz and 16 kHz), DPM and TPM can achieve about 95% and 88% improvement in bias stability, respectively.
RESUMO
Alzheimer's disease (AD) urgently needs innovative treatments due to the increasing aging population and lack of effective drugs and therapies. The amyloid fibrosis of AD-associated ß-amyloid (Aß) that could induce a series of cascades, such as oxidative stress and inflammation, is a critical factor in the progression of AD. Recently, peptide-based therapies for AD are expected to be great potential strategies for the high specificity to the targets, low toxicity, fast blood clearance, rapid cell and tissue permeability, and superior biochemical characteristics. Specifically, various chiral amino acids or peptide-modified interfaces draw much attention as effective manners to inhibit Aß fibrillation. On the other hand, peptide-based inhibitors could be obtained through affinity screening such as phage display or by rational design based on the core sequence of Aß fibrosis or by computer aided drug design based on the structure of Aß. These peptide-based therapies can inhibit Aß fibrillation and reduce cytotoxicity induced by Aß aggregation and some have been shown to relieve cognition in AD model mice and reduce Aß plaques in mice brains. This review summarizes the design method and characteristics of peptide inhibitors and their effect on the amyloid fibrosis of Aß. We further describe some analysis methods for evaluating the inhibitory effect and point out the challenges in these areas, and possible directions for the design of AD drugs based on peptides, which lay the foundation for the development of new effective drugs in the future.
Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Envelhecimento , Aminoácidos , Proteínas AmiloidogênicasRESUMO
Liver cancer accounts for 6% of all malignancies causing death worldwide, and hepatocellular carcinoma (HCC) is the most common histological type. HCC is a heterogeneous cancer, but how the tumour microenvironment (TME) of HCC contributes to the progression of HCC remains unclear. In this study, we investigated the immune microenvironment by multiomics analysis. The tumour immune infiltration characteristics of HCC were determined at the genomic, epigenetic, bulk transcriptome and single-cell levels by data from The Cancer Genome Atlas portal and the Gene Expression Omnibus (GEO). An epigenetic immune-related scoring system (EIRS) was developed to stratify patients with poor prognosis. SPP1, one gene in the EIRS system, was identified as an immune-related predictor of poor survival in HCC patients. Through receptor-ligand pair analysis in single-cell RNA-seq, SPP1 was indicated to mediate the crosstalk between HCC cells and macrophages via SPP1-CD44 and SPP1-PTGER4 association. In vitro experiments further validate SPP1 can trigger the polarization of macrophages to M2-phenotype tumour-associated macrophages (TAMs).
Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Osteopontina/metabolismo , Microambiente Tumoral , Adulto , Idoso , Algoritmos , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Metilação de DNA , Intervalo Livre de Doença , Feminino , Genoma Humano , Células Hep G2 , Humanos , Sistema Imunitário , Imunoterapia , Ligantes , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Fenótipo , Prognóstico , RNA Interferente Pequeno/metabolismo , Resultado do TratamentoRESUMO
BACKGROUND: Colorectal neuroendocrine carcinomas (CRNECs) are highly aggressive tumours with poor prognosis and low incidence. To date, the genomic landscape and molecular pathway alterations have not been elucidated. METHODS: Tissue sections and clinical information of CRNEC (n = 35) and CR neuroendocrine tumours (CRNETs) (n = 25) were collected as an in-house cohort (2010-2020). Comprehensive genomic and expression panels (AmoyDx® Master Panel) were applied to identify the genomic and genetic alterations of CRNEC. Through the depiction of the genomic landscape and transcriptome profile, we compared the difference between CRNEC and CRNET. Reverse transcription-polymerase chain reaction and immunofluorescence staining were performed to confirm the genetic alterations. RESULTS: High tumour mutation load was observed in CRNEC compared with CRNET. CRNECs showed a "cold" immune landscape and increased endothelial cell activity compared with NETs. Importantly, PAX5 was aberrantly expressed in CRNEC and predicted a poor prognosis of CRNECs. CCL5, a factor that is considered an immunosuppressive factor in several tumour types, was strongly expressed in CRNEC patients with long-term survival and correlated with high CD8+ T cell infiltration. CONCLUSION: Through the depiction of the genomic landscape and transcriptome profile, we demonstrated alterations in molecular pathways and potential targets for immunotherapy in CRNEC.
Assuntos
Carcinoma Neuroendócrino/genética , Quimiocina CCL5/genética , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Genômica/métodos , Tumores Neuroendócrinos/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Carcinoma Neuroendócrino/imunologia , Neoplasias Colorretais/imunologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Tumores Neuroendócrinos/imunologia , Prognóstico , Análise de Sobrevida , Microambiente Tumoral , Adulto JovemRESUMO
Bladder cancer is the fourth most common cancer in men, and it is becoming a prevalent malignancy. Most of the regular clinical examinations are prompt evaluations with cystoscopy, renal function testing, which require high-precision instrument, well-trained operators, and high cost. In this study, a microfluidic paper-based analytical device (µPAD) was fabricated to detect nuclear matrix protein 22 (NMP22) and bladder cancer antigen (BTA) from the urine samples. Urine samples were collected from 11 bladder cancer patients and 10 well-beings as experiment and control groups, respectively, to verify the working efficiency of µPAD. A remarkable checkout efficiency of up to 90.91% was found from the results. Meanwhile, this method is feasible for home-based self-detection from urine samples within 10 min for the total process, which provides a new way for quick, economical, and convenient tumor diagnosis, prognosis evaluation, and drug response.
Assuntos
Dispositivos Lab-On-A-Chip , Papel , Neoplasias da Bexiga Urinária/diagnóstico , Antígenos de Neoplasias/urina , Biomarcadores Tumorais/urina , Desenho de Equipamento , Humanos , Proteínas Nucleares/urina , Neoplasias da Bexiga Urinária/urinaRESUMO
BACKGROUND: KRAS mutations have been characterized as the major predictive biomarkers for resistance to cetuximab treatment. However, studies indicate that not all KRAS mutations are associated with equivalent treatment outcomes. KRAS G13D mutations were observed to account for approximately 16% of all KRAS mutations in advanced colorectal cancer patients, and whether these patients can benefit from cetuximab has not been determined. METHODS: An established KRAS G13D mutant colorectal cancer (CRC) patient-derived xenograft (PDX) model was treated with cetuximab. After repeated use of cetuximab, treatment-resistant PDX models were established. Tissue samples were collected before and during treatment, and multiomics data were subsequently sequenced and processed, including whole-exome, mRNA and miRNA data, to explore potential dynamic changes. RESULTS: Cetuximab treatment initially slowed tumor growth, but resistance developed not long after treatment. WES (whole-exome sequencing) and RNA sequencing found that 145 genes had low P values (< 0.01) when analyzed between the locus genotype and its related gene expression level. Among these genes, SWAP70 was believed to be a probable cause of acquired resistance. JAK2, PRKAA1, FGFR2 and RALBP1, as well as 10 filtered immune-related genes, also exhibited dynamic changes during the treatment. CONCLUSIONS: Cetuximab may be effective in KRAS G13D mutation patients. Dynamic changes in transcription, as determined by WES and RNA sequencing, occurred after repeated drug exposure, and these changes were believed to be the most likely cause of drug resistance.
Assuntos
Cetuximab/farmacologia , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos , Genoma Humano , Mutação , Proteínas Proto-Oncogênicas p21(ras)/genética , Transcriptoma/efeitos dos fármacos , Animais , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: The incidence rate of adenocarcinoma of the esophagogastric junction (AEG) has significantly increased over the past two decades. Surgery remains the only curative treatment. However, there are currently few studies on Chinese AEG patients. The purpose of this study was to retrospectively analyze the survival and prognostic factors of AEG patients in our center. METHODS: Between January 2008 and September 2014, 249 AEG patients who underwent radical resection were enrolled in this retrospective study, including 196 males and 53 females, with a median age of 64 (range 31-82). Prognostic factors were assessed with the log-rank test and Cox univariate and multivariate analyses. RESULTS: The 5-year survival rate of all patients was 49%. The median survival time of all enrolled patients was 70.1 months. Pathological type, intraoperative blood transfusion, tumor size, adjuvant chemotherapy, duration of hospital stay, serum CA199, CA125, CA242 and CEA, pTNM stage, lymphovascular or perineural invasion, and the ratio of positive to negative lymph nodes (PNLNR) were significantly associated with overall survival when analyzed in univariate analysis. CONCLUSIONS: Our study found that adjuvant chemotherapy, PNLNR, intraoperative blood transfusion, tumor size, perineural invasion, serum CEA, and duration of hospital stay after surgery had significance in multivariate analysis and were independent risk factors for survival.
Assuntos
Adenocarcinoma/mortalidade , Neoplasias Esofágicas/mortalidade , Junção Esofagogástrica/cirurgia , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , China/epidemiologia , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/cirurgia , Junção Esofagogástrica/patologia , Feminino , Gastrectomia , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do TratamentoRESUMO
Wnt7a is a member of the Wnt family and has been reported to be involved in the carcinogenesis and progression of many types of human cancer. However, little is known about Wnt7a expression and function in gastric cancer (GC). In the present study, Wnt7a expression in GC tissues and cells was investigated, the correlation between Wnt7a expression and the prognosis was also examined. The effects of Wnt7a on proliferation, invasion, and metastasis were evaluated in vitro and in vivo. Furthermore, the expression of epithelial-mesenchymal transition (EMT) markers and hypermethylation of the Wnt7a promoter were both detected. Wnt7a was downregulated in GC and its expression was associated with poor prognosis of patients with GC. Moreover, upregulation of Wnt7a significantly suppressed the growth, invasion, and metastasis abilities of GC cells in vitro and in vivo. Mechanistically, Wnt7a was found to inhibit EMT process of GC cells. In addition, the reducing expression of Wnt7a was due to methylation of 5'-CpG island within the promoter. Furthermore, the tumor suppressor role of Wnt7a is independent of canonical Wnt/ß-catenin signaling in GC cells. In conclusion, our findings demonstrated that Wnt7a could be used as a potential diagnostic marker and target for GC management.
Assuntos
Proliferação de Células/genética , Metilação de DNA/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Gástricas/genética , Proteínas Wnt/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Decitabina/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Carga Tumoral/genética , Proteínas Wnt/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodosRESUMO
With the advent of next-generation sequencing (NGS) and precision medicine, investigators have determined that tumors from different tissue sources that have the same types of genetic mutations will have a positive response to the same targeted therapy. This finding has prompted us to seek potential therapeutic targets for patients with carcinoma of unknown primary (CUP) using NGS technology. Here, we reported a case of a woman with CUP resistance to chemotherapy. We detected 450 cancer-related gene alterations using three metastatic tumor specimens and found the presence of EML4 exon13 and ALK exon20 fusion. The tumor did respond to crizotinib, a first-generation ALK inhibitor. When her tumor progressed, circulating tumor DNA detection revealed ALK L1196 M and G1269A mutation resistance to crizotinib, but she had a response to brigatinib. This case revealed that NGS technology used to detect the genetic alterations in patients with CUP might be a reliable method to find potential therapeutic targets, although the primary lesion could not always be confirmed. KEY POINTS: This case exemplifies responsiveness to ALK inhibitor in carcinoma of unknown primary (CUP) with EML4-ALK fusion.Next-generation sequencing is an important diagnostic tool to find potential therapeutic targets in CUP.Liquid biopsy may be useful to provide critical information about resistance mechanisms in CUP to guide sequential treatment decision with targeted therapy.
Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antimetabólitos Antineoplásicos/uso terapêutico , Desoxicitidina/análogos & derivados , Neoplasias Primárias Desconhecidas/tratamento farmacológico , Proteínas de Fusão Oncogênica/genética , Adulto , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Desoxicitidina/uso terapêutico , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Primárias Desconhecidas/genética , Neoplasias Primárias Desconhecidas/patologia , Prognóstico , GencitabinaRESUMO
Two new p-terphenyls, strepantibins A and B (1 and 2), along with the first representative of a naturally occurring bisphenyltropone, strepantibin C (3), were characterized from a Streptomyces sp. associated with the larvae of the mud dauber wasp Sceliphron madraspatanum. Their structures were determined by high-resolution electrospray ionization mass spectrometry, NMR, and X-ray crystallography data interpretation. Strepantibins A-C inhibited hexokinase II (HK2) activity and displayed antiproliferative activity against hepatoma carcinoma cells HepG-2, SMMC-7721 and plc-prf-5. In SMMC-7721 cells treated with strepantibin A, the morphological characteristics of apoptosis were observed.
Assuntos
Antineoplásicos/isolamento & purificação , Inibidores Enzimáticos/isolamento & purificação , Hexoquinase/antagonistas & inibidores , Streptomyces/química , Vespas/microbiologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
BACKGROUND: The majority of advanced biliary tract cancer (ABTC) patients will progress after gemcitabine and cisplatin (GP) doublet therapy, while the standard second-line regimen has not been established. We conducted this study to assess the efficacy and safety of second-line irinotecan and capecitabine (XELIRI) regimen vs. irinotecan monotherapy in ABTC patients progressed on GP. METHODS: Sixty-four GP refractory ABTC patients were randomised to either irinotecan 180 mg/m2 on day 1 plus capecitabine 1000 mg/m2 twice daily on days 1-10 of a 14-day cycle (XELIRI-arm) or single-agent irinotecan 180 mg/m2 on day 1 of a 14-day cycle (IRI-arm). Treatments were repeated until disease progression or unacceptable toxicity occurred. RESULTS: A total of 60 patients were included in the analysis. For XELIRI and IRI-arms, respectively, the median PFS was 3.7 vs. 2.4 months, 9-month survival rate 60.9% vs. 32.0%, median OS 10.1 vs. 7.3 months, and disease control rate 63.3% vs. 50.0%. The most common grade 3 or 4 toxicities were leucopaenia and neutropaenia. CONCLUSIONS: This randomised, phase II study of irinotecan-containing regimens in good PS second-line ABTC patients showed a clear benefit of XELIRI regimen over irinotecan monotherapy in prolonging PFS, with acceptable toxicity.