Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mass Spectrom Rev ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439762

RESUMO

The Earth's atmosphere is composed of an enormous variety of chemical species associated with trace gases and aerosol particles whose composition and chemistry have critical impacts on the Earth's climate, air quality, and human health. Mass spectrometry analysis as a powerful and popular analytical technique has been widely developed and applied in atmospheric chemistry for decades. Mass spectrometry allows for effective detection, identification, and quantification of a broad range of organic and inorganic chemical species with high sensitivity and resolution. In this review, we summarize recently developed mass spectrometry techniques, methods, and applications in atmospheric chemistry research in the past several years on molecular-level. Specifically, new developments of ion-molecule reactors, various soft ionization methods, and unique coupling with separation techniques are highlighted. The new mass spectrometry applications in laboratory studies and field measurements focused on improving the detection limits for traditional and emerging volatile organic compounds, characterizing multiphase highly oxygenated molecules, and monitoring particle bulk and surface compositions.

2.
Environ Sci Technol ; 58(10): 4727-4736, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38411392

RESUMO

Heterogeneous oxidative aging of organic aerosols (OA) occurs ubiquitously in the atmosphere, initiated by oxidants, such as the hydroxyl radicals (•OH). Hydroperoxyl radicals (HO2•) are also an important oxidant in the troposphere, and its gas-phase chemistry has been well studied. However, the role of HO2• in heterogeneous OA oxidation remains elusive. Here, we carry out •OH-initiated heterogeneous oxidation of several OA model systems under different HO2• conditions in a flow tube reactor and characterize the molecular oxidation products using a suite of mass spectrometry instrumentation. By using hydrogen-deuterium exchange (HDX) with thermal desorption iodide-adduct chemical ionization mass spectrometry, we provide direct observation of organic hydroperoxide (ROOH) formation from heterogeneous HO2• and peroxy radicals (RO2•) reactions for the first time. The ROOH may contribute substantially to the oxidation products, varied with the parent OA chemical structure. Furthermore, by regulating RO2• reaction pathways, HO2• also greatly influence the overall composition of the oxidized OA. Last, we suggest that the RO2• + HO2• reactions readily occur at the OA particle interface rather than in the particle bulk. These findings provide new mechanistic insights into the heterogeneous OA oxidation chemistry and help fill the critical knowledge gap in understanding atmospheric OA oxidative aging.


Assuntos
Compostos Orgânicos , Oxidantes , Oxirredução , Radical Hidroxila/química , Aerossóis/análise
3.
Phys Chem Chem Phys ; 26(22): 16160-16174, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38787752

RESUMO

Large aldehydes are widespread in the atmosphere and their oxidation leads to secondary organic aerosols. The current understanding of their chemical transformation processes is limited to hydroxyl radical (OH) oxidation during daytime and nitrate radical (NO3) oxidation during nighttime. Here, we report quantitative kinetics calculations of the reactions of hexanal (C5H11CHO), pentanal (C4H9CHO), and butanal (C3H7CHO) with hydroperoxyl radical (HO2) at atmospheric temperatures and pressures. We find that neither tunneling nor multistructural torsion anharmonicity should be neglected in computing these rate constants; strong anharmonicity at the transition states is also important. We find rate constants for the three reactions in the range 3.2-7.7 × 10-14 cm3 molecule-1 s-1 at 298 K and 1 atm, showing that the HO2 reactions can be competitive with OH and NO3 oxidation under some conditions relevant to the atmosphere. Our findings reveal that HO2-initiated oxidation of large aldehydes may be responsible for the formation of highly oxygenated molecules via autoxidation. We augment the theoretic studies with laboratory flow-tube experiments using an iodide-adduct time-of-flight chemical ionization mass spectrometer to confirm the theoretical predictions of peroxy radicals and the autoxidation pathway. We find that the adduct from HO2 + C5H11CHO undergoes a fast unimolecular 1,7-hydrogen shift with a rate constant of 0.45 s-1. We suggest that the HO2 reactions make significant contributions to the sink of aldehydes.

4.
Sensors (Basel) ; 24(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38894072

RESUMO

The large amount of sampled data in coherent phase-sensitive optical time-domain reflectometry (Φ-OTDR) brings heavy data transmission, processing, and storage burdens. By using the comparator combined with undersampling, we achieve simultaneous reduction of sampling rate and sampling resolution in hardware, thus greatly decreasing the sampled data volume. But this way will inevitably cause the deterioration of detection signal-to-noise ratio (SNR) due to the quantization noise's dramatic increase. To address this problem, denoising the demodulated phase signals using compressed sensing, which exploits the sparsity of spectrally sparse vibration, is proposed, thereby effectively enhancing the detection SNR. In experiments, the comparator with a sampling parameter of 62.5 MS/s and 1 bit successfully captures the 80 MHz beat signal, where the sampled data volume per second is only 7.45 MB. Then, when the piezoelectric transducer's driving voltage is 1 Vpp, 300 mVpp, and 100 mVpp respectively, the SNRs of the reconstructed 200 Hz sinusoidal signals are respectively enhanced by 23.7 dB, 26.1 dB, and 28.7 dB by using compressed sensing. Moreover, multi-frequency vibrations can also be accurately reconstructed with a high SNR. Therefore, the proposed technique can effectively enhance the system's performance while greatly reducing its hardware burden.

5.
Environ Sci Technol ; 57(17): 6965-6974, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37083304

RESUMO

Multiphase oxidative aging is a ubiquitous process for atmospheric organic aerosols (OA). But its kinetics was often found to be slow in previous laboratory studies where high hydroxyl radical concentrations ([•OH]) were used. In this study, we performed heterogeneous oxidation experiments of several model OA systems under varied aging timescales and gas-phase [•OH]. Our results suggest that OA heterogeneous oxidation may be 2-3 orders of magnitude faster when [•OH] is decreased from typical laboratory flow tube conditions to atmospheric levels. Direct laboratory mass spectrometry measurements coupled with kinetic simulations suggest that an intermolecular autoxidation mechanism mediated by particle-phase peroxy radicals greatly accelerates OA oxidation, with enhanced formation of organic hydroperoxides, alcohols, and fragmentation products. With autoxidation, we estimate that the OA oxidation timescale in the atmosphere may be from less than a day to several days. Thus, OA oxidative aging can have greater atmospheric impacts than previously expected. Furthermore, our findings reveal the nature of heterogeneous aerosol oxidation chemistry in the atmosphere and help improve the understanding and prediction of atmospheric OA aging and composition evolution.


Assuntos
Atmosfera , Atmosfera/análise , Atmosfera/química , Aerossóis/análise , Oxirredução
6.
Environ Sci Technol ; 57(48): 20085-20096, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37983166

RESUMO

The light absorption properties of brown carbon (BrC), which are linked to molecular chromophores, may play a significant role in the Earth's energy budget. While nitroaromatic compounds have been identified as strong chromophores in wildfire-driven BrC, other types of chromophores remain to be investigated. Given the electron-withdrawing nature of carbonyls ubiquitous in the atmosphere, we characterized carbonyl chromophores in BrC samples from the nighttime oxidation of furan and pyrrole derivatives, which are important but understudied precursors of secondary organic aerosols primarily found in wildfire emissions. Various carbonyl chromophores were characterized and quantified in BrC samples, and their ultraviolet-visible spectra were simulated by using time-dependent density functional theory. Our findings suggest that chromophores with carbonyls bonded to nitrogen (i.e., imides and amides) derived from N-containing heterocyclic precursors substantially contribute to BrC light absorption. The quantified N-containing carbonyl chromophores contributed to over 40% of the total light absorption at wavelengths below 350 nm and above 430 nm in pyrrole BrC. The contributions of chromophores to total light absorption differed significantly by wavelength, highlighting their divergent importance in different wavelength ranges. Overall, our findings highlight the significance of carbonyl chromophores in secondary BrC and underscore the need for further investigation.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Carbono , Luz , Aerossóis/análise , Pirróis , Monitoramento Ambiental , Poluentes Atmosféricos/análise , Material Particulado/análise
7.
Environ Sci Technol ; 57(15): 6263-6272, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37011031

RESUMO

Urbanization and fires perturb the quantities and composition of fine organic aerosol in the central Amazon, with ramifications for radiative forcing and public health. These disturbances include not only direct emissions of particulates and secondary organic aerosol (SOA) precursors but also changes in the pathways through which biogenic precursors form SOA. The composition of ambient organic aerosol is complex and incompletely characterized, encompassing millions of potential structures relatively few of which have been synthesized and characterized. Through analysis of submicron aerosol samples from the Green Ocean Amazon (GoAmazon2014/5) field campaign by two-dimensional gas chromatography coupled with machine learning, ∼1300 unique compounds were traced and characterized over two seasons. Fires and urban emissions produced chemically and interseasonally distinct impacts on product signatures, with only ∼50% of compounds observed in both seasons. Seasonally unique populations point to the importance of aqueous processing in Amazonian aerosol aging, but further mechanistic insights are impeded by limited product identity knowledge. Less than 10% of compounds were identifiable at an isomer-specific level. Overall, the findings (i) provide compositional characterization of anthropogenic influence on submicron organic aerosol in the Amazon, (ii) identify key season-to-season differences in chemical signatures, and (iii) highlight high-priority knowledge gaps in current speciated knowledge.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Poeira/análise
8.
Environ Sci Technol ; 57(27): 9943-9954, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37366549

RESUMO

We assessed the efficacy of ozonation as an indoor remediation strategy by evaluating how a carpet serves as a sink and long-term source of thirdhand tobacco smoke (THS) while protecting contaminants absorbed in deep reservoirs by scavenging ozone. Specimens from unused carpet that was exposed to smoke in the lab ("fresh THS") and contaminated carpets retrieved from smokers' homes ("aged THS") were treated with 1000 ppb ozone in bench-scale tests. Nicotine was partially removed from fresh THS specimens by volatilization and oxidation, but it was not significantly eliminated from aged THS samples. By contrast, most of the 24 polycyclic aromatic hydrocarbons detected in both samples were partially removed by ozone. One of the home-aged carpets was installed in an 18 m3 room-sized chamber, where its nicotine emission rate was 950 ng day-1 m-2. In a typical home, such daily emissions could amount to a non-negligible fraction of the nicotine released by smoking one cigarette. The operation of a commercial ozone generator for a total duration of 156 min, reaching concentrations up to 10,000 ppb, did not significantly reduce the carpet nicotine loading (26-122 mg m-2). Ozone reacted primarily with carpet fibers, rather than with THS, leading to short-term emissions of aldehydes and aerosol particles. Hence, by being absorbed deeply into carpet fibers, THS constituents can be partially shielded from ozonation.


Assuntos
Ozônio , Poluição por Fumaça de Tabaco , Nicotina/análise , Poluição por Fumaça de Tabaco/análise , Pisos e Cobertura de Pisos
9.
Environ Sci Technol ; 56(22): 15337-15346, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36282674

RESUMO

Limonene is an abundant monoterpene released into the atmosphere via biogenic emissions and biomass burning. However, the atmospheric oxidation and secondary organic aerosol (SOA) formation mechanisms of limonene, especially during nighttime, remain largely understudied. In this work, limonene was oxidized synergistically by ozone (O3) and nitrate radicals (NO3) in a flow tube reactor and a continuous flow stirred tank reactor. Upon oxidation, many highly oxidized organic nitrates and nitrooxy peroxy radicals (RO2) were observed in the gas phase within 1 min. Combining quantum chemical calculations with kinetic simulations, we found that the primary nitrooxy RO2 (C10H16NO5) through NO3 addition at the more substituted endocyclic double bond and at the exocyclic double bond (previously considered as minor pathways) can undergo autoxidation with rate constants of around 0.02 and 20 s-1 at 298 K, respectively. These pathways could explain a major portion of the observed highly oxidized organic nitrates. In the SOA, highly oxidized mono- and dinitrates (e.g., C10H17NO7-8 and C10H16,18N2O8-10) make up a significant contribution, highlighting nitrooxy RO2 autoxidation and sequential NO3 oxidation of limonene. The same organic nitrates are also observed in ambient aerosol during biomass burning and nighttime in the southeastern United States. Therefore, the present work provides new insights into the nighttime oxidation of limonene and SOA formation in the atmosphere.


Assuntos
Poluentes Atmosféricos , Ozônio , Limoneno , Nitratos/química , Poluentes Atmosféricos/análise , Aerossóis/química , Ozônio/química , Compostos Orgânicos , Óxidos de Nitrogênio
10.
Environ Sci Technol ; 56(22): 15398-15407, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36306431

RESUMO

Inorganic species always coexist with organic materials in atmospheric particles and may influence the heterogeneous oxidation of organic aerosols. However, very limited studies have explored the role of the inorganics in the chemical evolution of organic species in mixed aerosols. This study examines the heterogeneous oxidation of glutaric acid-ammonium sulfate and 1,2,6-hexanetriol-ammonium sulfate aerosols by hydroxyl radicals (OH) under varied organic mass fractions (forg) and relative humidity in a flow tube reactor. Coupling the oxidation kinetics and product measurements with kinetic model simulations, we found that under both low relative humidity (RH, 30-35%) and high RH conditions (85%), the decreased forg from 0.7 to 0.2 accelerates the oxidation of the organic materials by a factor of up to 11. We suggest that the faster oxidation kinetics under low-RH conditions is due to full or partial phase separation, with the organics greatly enriched at the particle outer region, while enhanced "salting-out" of the organics and OH adsorption caused by higher inorganics could explain the observations under high-RH conditions. Analysis of the oxidation products reveals that the dilution of organics by the inorganic salts and corresponding water uptake under high-RH conditions will favor alkoxy radical fragmentation by a factor of 3-4 and inhibit its secondary chain propagation chemistry. Our results suggest that atmospheric organic aerosol oxidation lifetime and composition are strongly impacted by the coexistent inorganic salts.


Assuntos
Sais , Cinética , Sulfato de Amônio/química , Umidade , Sais/química , Aerossóis/química
11.
Environ Sci Technol ; 56(12): 7761-7770, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35675110

RESUMO

Nitrogen-containing heterocyclic volatile organic compounds (VOCs) are important components of wildfire emissions that are readily reactive toward nitrate radicals (NO3) during nighttime, but the oxidation mechanism and the potential formation of secondary organic aerosol (SOA) and brown carbon (BrC) are unclear. Here, NO3 oxidation of three nitrogen-containing heterocyclic VOCs, pyrrole, 1-methylyrrole (1-MP), and 2-methylpyrrole (2-MP), was investigated in chamber experiments to determine the effect of precursor structures on SOA and BrC formation. The SOA chemical compositions and the optical properties were analyzed using a suite of online and offline instrumentation. Dinitro- and trinitro-products were found to be the dominant SOA constituents from pyrrole and 2-MP, but not observed from 1-MP. Furthermore, the SOA from 2-MP and pyrrole showed strong light absorption, while that from 1-MP were mostly scattering. From these results, we propose that NO3-initiated hydrogen abstraction from the 1-position in pyrrole and 2-MP followed by radical shift and NO2 addition leads to light-absorbing nitroaromatic products. In the absence of a 1-position hydrogen, NO3 addition likely dominates the 1-MP chemistry. We also estimate that the total SOA mass and light absorption from pyrrole and 2-MP are comparable to those from phenolic VOCs and toluene in biomass burning, underscoring the importance of considering nighttime oxidation of pyrrole and methylpyrroles in air quality and climate models.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/química , Poluentes Atmosféricos/análise , Carbono , Hidrogênio , Nitratos , Nitrogênio , Óxidos de Nitrogênio , Pirróis
12.
Anal Chem ; 93(24): 8595-8602, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34115471

RESUMO

Iodide-adduct chemical ionization mass spectrometry (I-CIMS) is a widely used technique in the atmospheric chemistry community to detect oxygenated volatile organic compounds (OVOCs) in real time. In this work, we report the occurrence of secondary ion chemistry from interactions between a strong oxygen donor (such as O3 and peracids) and acidic OVOCs (such as carboxylic acids and organic hydroperoxides) in the ion-molecule reaction (IMR) region of I-CIMS. Such interactions can lead to acidic organic molecules (HA or HB) clustering with [IO]- (e.g., [HA + IO]-) and dimer adducts ([A + B + I]-), in addition to the well-known iodide clusters ([HA + I]-). This ion chemistry was probed using common chemical standards as well as the gas-phase oxidation products of α-pinene and isoprene in a flowtube reactor. The results show that secondary ion chemistry can lead to misinterpretations of molecular compositions and distributions of the gas-phase products and an overestimation of the elemental O/C ratio overall. Nevertheless, the varying degrees of signal change in response to the secondary ion chemistry might be a clue to inform OVOCs' functionalities. Specifically, in the α-pinene ozonolysis system, the extents of ion signal reduction in the presence of additional acids in the IMR suggest that C9H14O4 produced in the gas phase is a peracid, rather than the often-assumed pinic acid. Thus, we suggest that the potential application of the secondary ion chemistry to inform organic functionalities is promising, which could help better understand the molecular compositions of gas-phase OVOCs and the reaction mechanisms therein.


Assuntos
Ozônio , Aerossóis , Iodetos , Espectrometria de Massas , Monoterpenos
13.
Environ Sci Technol ; 55(10): 6700-6709, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33913707

RESUMO

α-Pinene ozonolysis is a key process that impacts the formation of new particles and secondary organic aerosol (SOA) in the atmosphere. The mechanistic understanding of this chemistry has been inconclusive despite extensive research, hindering accurate simulations of atmospheric processes. In this work, we examine the ozonolysis of two synthesized unsaturated carbonyl isomers (C11H18O) which separately produce the two Criegee intermediates (CIs) that would form simultaneously in α-pinene ozonolysis. Direct gas-phase measurements of peroxy radicals (RO2) from flowtube ozonolysis experiments by an iodide-adduct chemical ionization mass spectrometer suggest that the initial C10H15O4· RO2 from the CI with a terminal methyl ketone undergo autoxidation 20-fold faster than the CI with a terminal aldehyde and always outcompete the bimolecular reactions under typical laboratory and atmospheric conditions. These results provide experimental constraints on the detailed RO2 autoxidation mechanisms for understanding new particle formation in the atmosphere. Further, isomer-resolved characterization of the SOA formed from a continuous-flow stirred tank reactor using ion mobility spectrometry mass spectrometry suggests that the two structurally different CIs predominantly and unexpectedly form constituents with identical structures. These results open up possibilities of diverse isomerization pathways that the two CIs may undergo that form mutual products to a large extent toward their way forming the SOA. This work highlights new insights into α-pinene ozonolysis pathways and call for future studies to uncover the detailed mechanisms.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis , Monoterpenos Bicíclicos , Monoterpenos
14.
Proc Natl Acad Sci U S A ; 115(9): 2038-2043, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440409

RESUMO

The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Monoterpenos/química , Estações do Ano , Sudeste dos Estados Unidos , Fatores de Tempo
15.
Chem Res Toxicol ; 33(8): 2157-2163, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32618192

RESUMO

Recent reports have linked severe lung injuries and deaths to the use of e-cigarettes and vaping products. Nevertheless, the causal relationship between exposure to vaping emissions and the observed health outcomes remains to be elucidated. Through chemical and toxicological characterization of vaping emission products, this study demonstrates that during vaping processes, changes in chemical composition of several commonly used vape juice diluents (also known as cutting agents) lead to the formation of toxic byproducts, including quinones, carbonyls, esters, and alkyl alcohols. The resulting vaping emission condensates cause inhibited cell proliferation and enhanced cytotoxicity in human airway epithelial cells. Notably, substantial formation of the duroquinone and durohydroquinone redox couple was observed in the vaping emissions from vitamin E acetate, which may be linked to acute oxidative stress and lung injuries reported by previous studies. These findings provide an improved molecular understanding and highlight the significant role of toxic byproducts in vaping-associated health effects.


Assuntos
Benzoquinonas/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Hidroquinonas/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Vaping/efeitos adversos , Vitamina E/efeitos adversos , Benzoquinonas/química , Benzoquinonas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Hidroquinonas/química , Hidroquinonas/metabolismo , Vitamina E/química , Vitamina E/metabolismo
16.
J Phys Chem A ; 123(50): 10782-10792, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31765152

RESUMO

Oxidative aging of atmospheric organic aerosols (OA) substantially modifies their chemical compositions, physical properties, and hence the various environmental impacts. Here, we report observations of a previously unrecognized process leading to dimer formation during heterogeneous •OH-initiated oxidative aging of oxygenated OA. Isomer-resolved ion mobility mass spectrometry measurements and reaction-diffusion kinetic simulations are in good agreement, elucidating new mechanisms of dimerization by organic radical (i.e., peroxy and alkoxy radicals) cross reactions using glutaric acid as a surrogate oxygenated OA. These radical reactions are predicted to occur more prominently near the gas-particle interface following oxidation, especially in diffusion-limited viscous OA particles. Chemical structure analysis shows that esters dominate the detected dimers, followed by organic peroxides and ethers, highlighting the importance of acyl peroxy and acyloxy radicals. Simulations suggest that the reported dimer formation through the new interfacial mechanism could be appreciable under both laboratory and ambient conditions. Therefore, the dimers that are formed and enriched at the gas-particle interface are expected to play a crucial role in the effective reactivity, volatility, viscosity, and hygroscopicity of aged OA particles.

17.
Proc Natl Acad Sci U S A ; 110(17): 6718-23, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23553832

RESUMO

Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NO(x) = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NO(x).


Assuntos
Aerossóis/química , Poluentes Atmosféricos/análise , Atmosfera/análise , Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Modelos Químicos , Óxidos de Nitrogênio/química , Pentanos/química , Butadienos/efeitos da radiação , Simulação por Computador , Hemiterpenos/efeitos da radiação , Luz , Metacrilatos/química , North Carolina , Oxirredução , Pentanos/efeitos da radiação , Fotoquímica
18.
Environ Sci Technol ; 49(22): 13130-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26460682

RESUMO

Comprehensive chemical information is needed to understand the environmental fate and impact of hydrocarbons released during oil spills. However, chemical information remains incomplete because of the limitations of current analytical techniques and the inherent chemical complexity of crude oils. In this work, gas chromatography (GC)-amenable C9-C33 hydrocarbons were comprehensively characterized from the National Institute of Standards and Technology Standard Reference Material (NIST SRM) 2779 Gulf of Mexico crude oil by GC coupled to vacuum ultraviolet photoionization mass spectrometry (GC/VUV-MS), with a mass balance of 68 ± 22%. This technique overcomes one important limitation faced by traditional GC and even comprehensive 2D gas chromatography (GC×GC): the necessity for individual compounds to be chromatographically resolved from one another in order to be characterized. VUV photoionization minimizes fragmentation of the molecular ions, facilitating the characterization of the observed hydrocarbons as a function of molecular weight (carbon number, NC), structure (number of double bond equivalents, NDBE), and mass fraction (mg kg(-1)), which represent important metrics for understanding their fate and environmental impacts. Linear alkanes (8 ± 1%), branched alkanes (11 ± 2%), and cycloalkanes (37 ± 12%) dominated the mass with the largest contribution from cycloalkanes containing one or two rings and one or more alkyl side chains (27 ± 9%). Linearity and good agreement with previous work for a subset of >100 components and for the sum of compound classes provided confidence in our measurements and represents the first independent assessment of our analytical approach and calibration methodology. Another crude oil collected from the Marlin platform (35 km northeast of the Macondo well) was shown to be chemically identical within experimental errors to NIST SRM 2779, demonstrating that Marlin crude is an appropriate surrogate oil for researchers conducting laboratory research into impacts of the DeepWater Horizon disaster.


Assuntos
Hidrocarbonetos/química , Petróleo/análise , Cromatografia Gasosa , Golfo do México , Isomerismo , Espectrometria de Massas , Peso Molecular , Campos de Petróleo e Gás/química , Poluição por Petróleo/análise , Padrões de Referência , Temperatura
19.
Environ Sci Technol ; 49(16): 9768-77, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200667

RESUMO

Traditional descriptions of gas-particle partitioning of organic aerosols (OA) rely solely on thermodynamic properties (e.g., volatility). Under realistic conditions where phase partitioning is dynamic rather than static, the transformation of OA involves the interplay of multiphase partitioning with oxidative aging. A key challenge remains in quantifying the fundamental time scales for evaporation and oxidation of semivolatile OA. In this paper, we use isomer-resolved product measurements of a series of normal-alkanes (C18, C20, C22, and C24) to distinguish between gas-phase and heterogeneous oxidation products formed by reaction with hydroxyl radicals (OH). The product isomer distributions when combined with kinetics measurements of evaporation and oxidation enable a quantitative description of the multiphase time scales to be simulated using a single-particle kinetic model. Multiphase partitioning and oxidative transformation of semivolatile normal-alkanes under laboratory conditions is largely controlled by the particle phase state, since the time scales of heterogeneous oxidation and evaporation are found to occur on competing time scales (on the order of 10(-1) h). This is in contrast to atmospheric conditions where heterogeneous oxidation time scales are expected to be much longer (on the order of 10(2) h), with gas-phase oxidation being the dominant process regardless of the evaporation kinetics. Our results demonstrate the dynamic nature of OA multiphase partitioning and oxidative aging and reveal that the fundamental time scales of these processes are crucial for reliably extending laboratory measurements of OA phase partitioning and aging to the atmosphere.


Assuntos
Aerossóis/análise , Alcanos/química , Atmosfera/química , Simulação por Computador , Isomerismo , Cinética , Oxirredução , Fatores de Tempo , Volatilização
20.
Environ Sci Technol ; 48(20): 12012-21, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25226366

RESUMO

Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-ß-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.


Assuntos
Aerossóis/química , Butadienos/química , Compostos de Epóxi/química , Hemiterpenos/química , Pentanos/química , Aerossóis/análise , Biomassa , Carbono/análise , Luz , Espectrometria de Massas/métodos , Sudeste dos Estados Unidos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa