Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Opt Express ; 31(15): 24203-24212, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475253

RESUMO

The interleaver was one of the key devices in dense wavelength division multiplexing (DWDM) applications. In this study, an interleaver with an asymmetrical Mach-Zehnder interferometer structure was designed, fabricated, and characterized in hybrid silicon and lithium niobate thin films (Si-LNOI). The interleaver based on Si-LNOI could be fabricated by mature processing technology of Si photonic, and it was capable of the electro-optical (E-O) tuning function by using the E-O effect of LN. In the range of 1530-1620 nm, the interleaver achieved a channel spacing of 55 GHz and an extinction ratio of 12-28 dB. Due to the large refractive index of Si, the Si loading strip waveguide based on Si-LNOI had a compact optical mode area, which allowed a small electrode gap to improve the E-O modulation efficiency of the interleaver. For an E-O interaction length of 1 mm, the E-O modulation efficiency was 26 pm/V. The interleaver will have potential applications in DWDM systems, optical switches, and filters.

2.
J Am Chem Soc ; 144(18): 8138-8152, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35452210

RESUMO

Controlling the interfaces and interactions of colloidal nanoparticles (NPs) via tethered molecular moieties is crucial for NP applications in engineered nanomaterials, optics, catalysis, and nanomedicine. Despite a broad range of molecular types explored, there is a need for a flexible approach to rationally vary the chemistry and structure of these interfacial molecules for controlling NP stability in diverse environments, while maintaining a small size of the NP molecular shell. Here, we demonstrate that low-molecular-weight, bifunctional comb-shaped, and sequence-defined peptoids can effectively stabilize gold NPs (AuNPs). The generality of this robust functionalization strategy was also demonstrated by coating of silver, platinum, and iron oxide NPs with designed peptoids. Each peptoid (PE) is designed with varied arrangements of a multivalent AuNP-binding domain and a solvation domain consisting of oligo-ethylene glycol (EG) branches. Among designs, a peptoid (PE5) with a diblock structure is demonstrated to provide a superior nanocolloidal stability in diverse aqueous solutions while forming a compact shell (∼1.5 nm) on the AuNP surface. We demonstrate by experiments and molecular dynamics simulations that PE5-coated AuNPs (PE5/AuNPs) are stable in select organic solvents owing to the strong PE5 (amine)-Au binding and solubility of the oligo-EG motifs. At the vapor-aqueous interface, we show that PE5/AuNPs remain stable and can self-assemble into ordered 2D lattices. The NP films exhibit strong near-field plasmonic coupling when transferred to solid substrates.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Peptoides , Ouro/química , Nanopartículas Metálicas/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Peptoides/química
3.
Nano Lett ; 21(4): 1863-1870, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33576631

RESUMO

The ability to create nanoengineered silicon carbide (SiC) architectures is important for the diversity of optical, electronic, and mechanical applications. Here, we report a fabrication of periodic three-dimensional (3D) SiC nanoscale architectures using a self-assembled and designed 3D DNA-based framework. The assembly is followed by the templating into silica and subsequent conversion into SiC using a lower temperature pathway (<700 °C) via magnesium reduction. The formed SiC framework lattice has a unit size of about 50 nm and domains over 5 µm, and it preserves the integrity of the original 3D DNA lattice. The spectroscopic and electron microscopy characterizations reveal SiC crystalline morphology of 3D nanoarchitectured lattices, whereas electrical probing shows 2 orders of magnitude enhancements of electrical conductivity over the precursor silica framework. The reported approach offers a versatile methodology toward creating highly structured and spatially prescribed SiC nanoarchitectures through the DNA-programmable assembly and the combination of templating processes.


Assuntos
Compostos Inorgânicos de Carbono , Compostos de Silício , DNA/genética , Dióxido de Silício
4.
Langmuir ; 37(33): 10143-10149, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370486

RESUMO

We report on the assembly of gold nanoparticle (AuNPs) superlattices at the liquid/vapor interface and in the bulk of their suspensions. Interparticle distances in the assemblies are achieved on multiple length scales by varying chain lengths of surface grafted AuNPs by polyethylene glycol (PEG) with molecular weights in the range 2000-40,000 Da. Crystal structures and lattice constants in both 2D and 3D assemblies are determined by synchrotron-based surface-sensitive and small-angle X-ray scattering. Assuming knowledge of grafting density, we show that experimentally determined interparticle distances are adequately modeled by spherical brushes close to the θ point (Flory-Huggins parameter, χ≈12) for 2D superlattices at a liquid interface and a nonsolvent (χ = ∞) for the 3D dry superlattices.

5.
Langmuir ; 34(28): 8374-8378, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29947524

RESUMO

Surface-sensitive X-ray reflectivity and grazing incidence small-angle X-ray scattering reveal the structure of polymer-capped-gold nanoparticles (AuNPs that are grafted with poly( N-isopropylacrylamide); PNIPAM-AuNPs) as they self-assemble and crystallize at the aqueous suspension/vapor interface. Citrate-stabilized AuNPs (5 and 10 nm in nominal diameter) are ligand-exchanged by 6 kDa PNIPAM-thiol to form corona brushes around the AuNPs that are highly stable and dispersed in aqueous suspensions. Surprisingly, no clear evidence of thermosensitive effect on surface enrichment or self-assembly of the PNIPAM-AuNPs is observed in the 10-35 °C temperature range. However, addition of simple salts (in this case, NaCl) to the suspension induces migration of the PNIPAM-AuNPs to the aqueous surface, and above a threshold salt concentration, two-dimensional crystals are formed. The 10 nm PNIPAM-AuNPs form a highly ordered single layer with in-plane triangular structure, whereas the 5 nm capped NPs form short-range triangular structure that gradually becomes denser as salt concentration increases.

6.
Langmuir ; 33(43): 12227-12234, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28985464

RESUMO

We report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor-liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor-liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to the protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.

7.
Langmuir ; 32(30): 7664-70, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27409514

RESUMO

Surface-sensitive X-ray scattering and spectroscopy techniques reveal significant adsorption of iron ions and iron-hydroxide (Fe(III)) complexes to a charge-neutral zwitterionic template of phosphatidylcholine (PC). The PC template is formed by a Langmuir monolayer of dipalmitoyl-PC (DPPC) that is spread on the surface of 2 to 40 µM FeCl3 solutions at physiological levels of KCl (100 mM). At 40 µM of Fe(III) as many as ∼3 iron atoms are associated with each PC group. Grazing incidence X-ray diffraction measurements indicate a significant disruption in the in-plane ordering of DPPC molecules upon iron adsorption. The binding of iron-hydroxide complexes to a neutral PC surface is yet another example of nonelectrostatic, presumably covalent bonding to a charge-neutral organic template. The strong binding and the disruption of in-plane lipid structure has biological implications on the integrity of PC-derived lipid membranes, including those based on sphingomyelin.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Cloretos/química , Compostos Férricos/química , Ferro/química , Adsorção , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Cloreto de Potássio/química
8.
Langmuir ; 31(9): 2818-25, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25669122

RESUMO

Magnetotactic bacteria that produce magnetic nanocrystals of uniform size and well-defined morphologies have inspired the use of biomineralization protein Mms6 to promote formation of uniform magnetic nanocrystals in vitro. Small angle X-ray scattering (SAXS) studies in physiological solutions reveal that Mms6 forms compact globular three-dimensional (3D) micelles (approximately 10 nm in diameter) that are, to a large extent, independent of concentration. In the presence of iron ions in the solutions, the general micellar morphology is preserved, however, with associations among micelles that are induced by iron ions. Compared with Mms6, the m2Mms6 mutant (with the sequence of hydroxyl/carboxyl containing residues in the C-terminal domain shuffled) exhibits subtle morphological changes in the presence of iron ions in solutions. The analysis of the SAXS data is consistent with a hierarchical core-corona micellar structure similar to that found in amphiphilic polymers. The addition of ferric and ferrous iron ions to the protein solution induces morphological changes in the micellar structure by transforming the 3D micelles into objects of reduced dimensionality of 2, with fractal-like characteristics (including Gaussian-chain-like) or, alternatively, platelet-like structures.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ferro/química , Nanopartículas de Magnetita/química , Minerais/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Magnetospirillum , Micelas , Soluções
9.
J Appl Crystallogr ; 57(Pt 3): 714-727, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38846761

RESUMO

The capillary wave model of a liquid surface predicts both the X-ray specular reflection and the diffuse scattering around it. A quantitative method is presented to obtain the X-ray reflectivity (XRR) from a liquid surface through the diffuse scattering data around the specular reflection measured using a grazing incidence X-ray off-specular scattering (GIXOS) geometry at a fixed horizontal offset angle with respect to the plane of incidence. With this approach the entire Qz -dependent reflectivity profile can be obtained at a single, fixed incident angle. This permits a much faster acquisition of the profile than with conventional reflectometry, where the incident angle must be scanned point by point to obtain a Qz -dependent profile. The XRR derived from the GIXOS-measured diffuse scattering, referred to in this paper as pseudo-reflectivity, provides a larger Qz range compared with the reflectivity measured by conventional reflectometry. Transforming the GIXOS-measured diffuse scattering profile to pseudo-XRR opens up the GIXOS method to widely available specular XRR analysis software tools. Here the GIXOS-derived pseudo-XRR is compared with the XRR measured by specular reflectometry from two simple vapor-liquid interfaces at different surface tension, and from a hexadecyltri-methyl-ammonium bromide monolayer on a water surface. For the simple liquids, excellent agreement (beyond 11 orders of magnitude in signal) is found between the two methods, supporting the approach of using GIXOS-measured diffuse scattering to derive reflectivities. Pseudo-XRR obtained at different horizontal offset angles with respect to the plane of incidence yields indistinguishable results, and this supports the robustness of the GIXOS-XRR approach. The pseudo-XRR method can be extended to soft thin films on a liquid surface, and criteria are established for the applicability of the approach.

10.
Ann Med ; 56(1): 2320301, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38442298

RESUMO

Aim: This comprehensive review aims to explore the potential applications of Gastrin-releasing peptide receptor (GRPR) in the diagnosis and treatment of prostate cancer. Additionally, the study investigates the role of GRPR in prognostic assessment for individuals afflicted with prostate cancer.Methods: The review encompasses a thorough examination of existing literature and research studies related to the upregulation of GRPR in various tumor types, with a specific focus on prostate. The review also evaluates the utility of GRPR as a molecular target in prostate cancer research, comparing its significance to the well-established Prostate-specific membrane antigen (PSMA). The integration of radionuclide-targeted therapy with GRPR antagonists is explored as an innovative therapeutic approach for individuals with prostate cancer.Results: Research findings suggest that GRPR serves as a promising molecular target for visualizing low-grade prostate cancer. Furthermore, it is demonstrated to complement the detection of lesions that may be negative for PSMA. The integration of radionuclide-targeted therapy with GRPR antagonists presents a novel therapeutic paradigm, offering potential benefits for individuals undergoing treatment for prostate cancer.Conclusions: In conclusion, this review highlights the emerging role of GRPR in prostate cancer diagnosis and treatment. Moreover, the integration of radionuclide-targeted therapy with GRPR antagonists introduces an innovative therapeutic approach that holds promise for improving outcomes in individuals dealing with prostate cancer. The potential prognostic value of GRPR in assessing the disease's progression adds another dimension to its clinical significance in the realm of urology.


Assuntos
Neoplasias da Próstata , Receptores da Bombesina , Masculino , Humanos , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/tratamento farmacológico , Biomarcadores , Regulação para Cima , Radioisótopos
11.
J Phys Chem B ; 128(27): 6542-6548, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38953612

RESUMO

Specific ion effects in the interactions of monovalent anions with amine groups─one of the hydrophilic moieties found in proteins─were investigated using octadecylamine monolayers floating at air-aqueous solution interfaces. We find that at solution pH 5.7, larger monovalent anions induce a nonzero pressure starting at higher areas/molecules, i.e., a wider "liquid expanded" region in the monolayer isotherms. Using X-ray fluorescence at near total reflection (XFNTR), an element- and surface-specific technique, ion adsorption to the amines at pH 5.7 is confirmed to be ion-specific and to follow the conventional Hofmeister series. However, at pH 4, this ion specificity is no longer observed. We propose that at the higher pH, the amine headgroups are only partially protonated, and large polarizable ions such as iodine are better able to boost amine protonation. At the lower pH, on the other hand, the monolayer is fully protonated, and electrostatic interactions dominate over ion specificity. These results demonstrate that ion specificity can be modified by changing the experimental conditions.

12.
Gels ; 10(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391442

RESUMO

Deep wells and ultra-deep wells often encounter cracks, karst caves, and other developed strata, which can lead to leakage during drilling. Conventional bridge slurry plugging technology is prone to leaking due to the poor plugging effect of the plugging agent. The gel plugging agent possesses characteristics of flexible plugging and adaptive matching of formation leakage channels. It can fill cracks or caves and enhance the pressure-bearing capacity of the formation. A controllable crosslinking plugging agent based on low-molecular-weight polyacrylamide was studied. Polyacrylamide with different molecular weights is synthesized from acrylamide and an initiator. A crosslinking time-controllable polymer is synthesized from low-molecular-weight polyacrylamide by adding crosslinking agent and retarder. The low-molecular-weight polyacrylamide plugging agent has low viscosity before gelation and good fluidity in the wellbore. After being configured on the ground, it is transported by pipeline and sent underground to reach the thickening condition. The gel solution rapidly solidifies, and its strength improves after high-temperature crosslinking. The synthesis conditions of the polymer were as follows: a monomer concentration of 9%, initiator 3.5%, synthesis temperature of 65 °C, and hydrogen peroxide initiator. The optimal formula of the gel plugging agent is as follows: a polymer concentration of 6%, a crosslinking agent concentration of 1%, and a retarder concentration of 8%. The generated polymer molecular structure contains amide groups. This crosslinking time-controllable plugging agent based on low-molecular-weight polyacrylamide has stable rheology, and its temperature resistance can reach 150 °C. At 150 °C, the gelation time can be controlled by adjusting the concentration of retarder, and the longest can reach 4 h. The plugging efficiency of the gel plugging agent is more than 95%. With the increase in seam width, the pressure of the gel plugging agent gradually decreases.

13.
J Colloid Interface Sci ; 650(Pt B): 1941-1948, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37517193

RESUMO

HYPOTHESIS: Introducing charged terminal groups to polymers that graft nanoparticles enable Coulombic control over their assembly by tuning the pH and salinity of their aqueous suspensions. EXPERIMENTS: Gold nanoparticles (AuNPs) are grafted with poly (ethylene glycol) (PEG) terminated with (charge-neutral), (negatively charged) or groups (positively charged), and characterized with dynamic light scattering, ζ-potential, and thermal gravimetric analysis. Liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) are used to determine the density profile and in-plane structure of the AuNPs assembly at the aqueous surface. FINDINGS: Assembly of PEG-AuNPs at the liquid/vapor interface is tunable by adjusting pH or salinity for COOH but less for terminals. The distinct assembly behaviors are attributed to the overall charge of PEG-AuNPs as well as PEG conformation. COOH-PEG corona is more compact than those of the other terminal groups, leading to a crystalline structure with a smaller superlattice. The net charge per particle depends not only on the PEG terminal groups but also on the cation sequestration of PEG and the intrinsic negative charge of the AuNP surface. [1] The closeness to overall charge neutrality, and hydrogen bonding in play, brought by -PEG, drive -PEG-AuNPs to assembly and crystallinity without additives to the suspensions.

14.
Nanoscale ; 15(12): 5855-5864, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36861889

RESUMO

It is well established that porosity in carbon materials can benefit electromagnetic wave absorption by providing stronger interfacial polarization, better impedance matching, multiple reflections, and lower density, but an in-depth assessment is still lacking on this issue. The random network model describes the dielectric behavior of a conduction-loss absorber-matrix mixture with two parameters related to the volume fraction and conductivity, respectively. In this work, the porosity in carbon materials was tuned by a simple, green, and low-cost Pechini method, and the mechanism of how porosity affects EM wave absorption was investigated quantitatively based on the model. It was discovered that porosity was crucial for the formation of a random network, and a higher specific pore volume led to a larger volume fraction parameter and a lower conductivity parameter. Guided by the high throughput parameter sweeping based on the model, the Pechini-derived porous carbon could achieve an effective absorption bandwidth of 6.2 GHz at 2.2 mm. This study further verifies the random network model, unveiling the implication and influencing factors of the parameters, and opens a new path to optimize the electromagnetic wave absorption performance of conduction-loss materials.

15.
ACS Nano ; 17(15): 15012-15024, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459253

RESUMO

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.

16.
J Phys Chem Lett ; 13(15): 3424-3430, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35411773

RESUMO

We have created two-dimensional (2D) binary superlattices by cocrystallizing gold nanoparticles (AuNPs) of two distinct sizes into √3 × âˆš3 and 2 × 2 complex binary superlattices, derived from the hexagonal structures of the single components. The building blocks of these binary systems are AuNPs that are functionalized with different chain lengths of poly(ethylene glycol) (PEG). The assembly of these functionalized NPs at the air-water interface is driven by the presence of salt, causing PEG-AuNPs to migrate to the aqueous surface and assemble into a crystalline lattice. We have used liquid surface X-ray reflectivity (XR) and grazing incidence small-angle X-ray scattering (GISAXS) to examine the assembly and crystallization at the liquid interface.

17.
Sci Adv ; 7(16)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863721

RESUMO

Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules. We show that solvent evaporation from a suspension of cellulose nanocrystals (CNCs) and l-(+)-tartaric acid [l-(+)-TA] causes phase separation and precipitation, which, being coupled with a reaction/diffusion, results in rhythmic alternation of CNC-rich and l-(+)-TA-rich rings. The CNC-rich regions have a cholesteric structure, while the l-(+)-TA-rich bands are formed by radially aligned elongated bundles. The moving edge of the pattern propagates with a finite constant velocity, which enables control of periodicity by varying film preparation conditions. This work expands knowledge about self-organizing reaction-diffusion systems and offers a strategy for the design of self-organizing materials.

18.
Nat Commun ; 12(1): 3702, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140491

RESUMO

Versatile methods to organize proteins in space are required to enable complex biomaterials, engineered biomolecular scaffolds, cell-free biology, and hybrid nanoscale systems. Here, we demonstrate how the tailored encapsulation of proteins in DNA-based voxels can be combined with programmable assembly that directs these voxels into biologically functional protein arrays with prescribed and ordered two-dimensional (2D) and three-dimensional (3D) organizations. We apply the presented concept to ferritin, an iron storage protein, and its iron-free analog, apoferritin, in order to form single-layers, double-layers, as well as several types of 3D protein lattices. Our study demonstrates that internal voxel design and inter-voxel encoding can be effectively employed to create protein lattices with designed organization, as confirmed by in situ X-ray scattering and cryo-electron microscopy 3D imaging. The assembled protein arrays maintain structural stability and biological activity in environments relevant for protein functionality. The framework design of the arrays then allows small molecules to access the ferritins and their iron cores and convert them into apoferritin arrays through the release of iron ions. The presented study introduces a platform approach for creating bio-active protein-containing ordered nanomaterials with desired 2D and 3D organizations.


Assuntos
Apoferritinas/química , Bioengenharia/métodos , Citoesqueleto/química , DNA/química , Ferritinas/química , Nanoestruturas/química , Apoferritinas/ultraestrutura , Microscopia Crioeletrônica , Citoesqueleto/ultraestrutura , Ferritinas/ultraestrutura , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Conformação Molecular
19.
Nat Commun ; 11(1): 2279, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385298

RESUMO

Nanoparticle-based clusters permit the harvesting of collective and emergent properties, with applications ranging from optics and sensing to information processing and catalysis. However, existing approaches to create such architectures are typically system-specific, which limits designability and fabrication. Our work addresses this challenge by demonstrating that cluster architectures can be rationally formed using components with programmable valence. We realize cluster assemblies by employing a three-dimensional (3D) DNA meshframe with high spatial symmetry as a site-programmable scaffold, which can be prescribed with desired valence modes and affinity types. Thus, this meshframe serves as a versatile platform for coordination of nanoparticles into desired cluster architectures. Using the same underlying frame, we show the realization of a variety of preprogrammed designed valence modes, which allows for assembling 3D clusters with complex architectures. The structures of assembled 3D clusters are verified by electron microcopy imaging, cryo-EM tomography and in-situ X-ray scattering methods. We also find a close agreement between structural and optical properties of designed chiral architectures.

20.
ACS Nano ; 14(2): 1369-1378, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-31877024

RESUMO

Although fluorescence and lifetimes of nanoscale emitters can be manipulated by plasmonic materials, it is harder to control polarization due to strict requirements on emitter environments. An ability to engineer 3D nanoarchitectures with nanoscale precision is needed for controlled polarization of nanoscale emitters. Here, we show that prescribed 3D heterocluster architectures with polarized emission can be successfully assembled from nanoscale fluorescent emitters and metallic nanoparticles using DNA-based self-assembly methods. An octahedral DNA origami frame serves as a programmable scaffold for heterogeneous nanoparticle assembly into prescribed clusters. Internal space and external connections of the frames are programmed to coordinate spherical quantum dots (QDs) and gold nanoparticles (AuNPs) into heterocluster architectures through site-specific DNA encodings. We demonstrate and characterize assembly of these architectures using in situ and ex situ structural methods. These cluster nanodevices exhibit polarized light emission with a plasmon-induced dipole along the QD-AuNP nanocluster axis, as observed by single-cluster optical probing. Moreover, emittance properties can be tuned via cluster design. Through a systematic study, we analyzed and established the correlation between cluster architecture, cluster orientation, and polarized emission at a single-emitter level. Excellent correspondence between the optical behavior of these clusters and theoretical predictions was observed. This approach provides the basis for rational creation of single-emitter 3D nanodevices with controllable polarization output using a highly customizable DNA assembly platform.


Assuntos
DNA/química , Ouro/química , Nanopartículas Metálicas/química , Pontos Quânticos/química , DNA/síntese química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa