Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Comput Chem ; 45(14): 1087-1097, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243618

RESUMO

A series of pentagonal bipyramidal anionic germanium clusters doped with heavy rare earth elements, REGe 6 - (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), have been identified at the PBE0/def2-TZVP level using density functional theory (DFT). Our findings reveal that the centrally doped pentagonal ring structure demonstrates enhanced stability and heightened aromaticity due to its uniform bonding characteristics and a larger charge transfer region. Through natural population analysis and spin density diagrams, we observed a monotonic decrease in the magnetic moment from Gd to Yb. This is attributed to the decreasing number of unpaired electrons in the 4f orbitals of the heavy rare earth atoms. Interestingly, the system doped with Er atoms showed lower stability and anti-aromaticity, likely due to the involvement of the 4f orbitals in bonding. Conversely, the systems doped with Gd and Tb atoms stood out for their high magnetism and stability, making them potential building blocks for rare earth-doped semiconductor materials.

2.
Phys Chem Chem Phys ; 26(4): 2986-2994, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38163990

RESUMO

Rare earth elements have high chemical reactivity, and doping them into semiconductor clusters can induce novel physicochemical properties. The study of the physicochemical mechanisms of interactions between rare earth and tin atoms will enhance our understanding of rare earth functional materials from a microscopic perspective. Hence, the structure, electronic characteristics, stability, and aromaticity of endohedral cages MSn16- (M = Sc, Y, La) have been investigated using a combination of the hybrid PBE0 functional, stochastic kicking, and artificial bee colony global search technology. By comparing the simulated results with experimental photoelectron spectra, it is determined that the most stable structure of these clusters is the Frank-Kasper polyhedron. The doping of atoms has a minimal influence on density of states of the pure tin system, except for causing a widening of the energy gap. Various methods such as ab initio molecular dynamics simulations, the spherical jellium model, adaptive natural density partitioning, localized orbital locator, and electron density difference are employed to analyze the stability of these clusters. The aromaticity of the clusters is examined using iso-chemical shielding surfaces and the gauge-including magnetically induced currents. This study demonstrates that the stability and aromaticity of a tin cage can be systematically adjusted through doping.

3.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675512

RESUMO

The geometrical structures, relative stabilities, and electronic and magnetic properties of niobium carbon clusters, Nb7Cn (n = 1-7), are investigated in this study. Density functional theory (DFT) calculations, coupled with the Saunders Kick global search, are conducted to explore the structural properties of Nb7Cn (n = 1-7). The results regarding the average binding energy, second-order difference energy, dissociation energy, HOMO-LUMO gap, and chemical hardness highlight the robust stability of Nb7C3. Analysis of the density of states suggests that the molecular orbitals of Nb7Cn primarily consist of orbitals from the transition metal Nb, with minimal involvement of C atoms. Spin density and natural population analysis reveal that the total magnetic moment of Nb7Cn predominantly resides on the Nb atoms. The contribution of Nb atoms to the total magnetic moment stems mainly from the 4d orbital, followed by the 5p, 5s, and 6s orbitals.

4.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446733

RESUMO

The growth behavior, stability, electronic and magnetic properties of the Gd2Sin- (n = 3-12) clusters are reported, which are investigated using density functional theory calculations combined with the Saunders 'Kick' and the Artificial Bee Colony algorithm. The lowest-lying structures of Gd2Sin- (n = 3-12) are all exohedral structures with two Gd atoms face-capping the Sin frameworks. Results show that the pentagonal bipyramid (PB) shape is the basic framework for the nascent growth process of the present clusters, and forming the PB structure begins with n = 5. The Gd2Si5- is the potential magic cluster due to significantly higher average binding energies and second order difference energies, which can also be further verified by localized orbital locator and adaptive natural density partitioning methods. Moreover, the localized f-electron can be observed by natural atomic orbital analysis, implying that these electrons are not affected by the pure silicon atoms and scarcely participate in bonding. Hence, the implantation of these elements into a silicon substrate could present a potential alternative strategy for designing and synthesizing rare earth magnetic silicon-based materials.


Assuntos
Algoritmos , Silício , Proliferação de Células , Ciclo Celular , Elétrons
5.
Ecotoxicol Environ Saf ; 237: 113557, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483149

RESUMO

Mounting evidence has confirmed the existence of plant-soil feedback, a reflection of plant-soil interaction. However, analysis of ecological feedback pathways remains a challenge. In this study, single and mixed plant communities in different soil ecosystems were screened using strict control systems in global ecosystems to identify the positive or negative feedback effects in indicator plants. Furthermore, the plant components and biomass were identified in each pathway. The significantly changed components indicated pathway factors. As negative feedback increased, the InRR (Response Ratio) of soil organic matter, soil total N, microbial alpha diversity and the symbiotic fungi proportion were significantly up-regulated (P < 0.05). In contrast, the stoichiometric ratio (C: N), water content, and the pathogenic bacteria proportion were downregulated (P < 0.05). However, the positive feedback showed the opposite trend. Importantly, N limit as a transform node between positive and negative plant-soil feedback predicted by Akaike information criterion (AIC > 0.8). Therefore, it has become an important evaluation standard for the inter-species relationship and ecological environment changes under the background of global N deposition. Finally, the feedback values of each sampling site were recalculated over the next 20 years, 50 years, and 100 years based on the global temperature rise and changing rainfall patterns. We also found that global warming and extreme rainfall may change the distribution of interspecies relationships on a global scale, with global warming having the greatest recognisable effect and decreasing the negative feedback layout by 21.7% (P < 0.05). Therefore, this work promotes the cognition of relationship of soil environment, microbial abundance and function, plant diversity and plant- soil feedback model. Meanwhile, it is of great significance to protect species diversity and restore environmental degradation.


Assuntos
Micorrizas , Solo , Biodiversidade , Ecossistema , Retroalimentação , Micorrizas/metabolismo , Nitrogênio/análise , Plantas/metabolismo , Microbiologia do Solo , Temperatura
6.
BMC Surg ; 20(1): 226, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028289

RESUMO

BACKGROUND: The incidence of fractures around the femoral prosthesis among patients undergoing hip arthroplasty is increasing and has become the third leading cause of hip revision. While numerous methods for the surgical treatment of periprosthetic femoral fractures (PFFs) have been proposed, only few reports have examined the long-term efficacy of surgical treatment. This study aims to examine the mid-and long-term efficacy of surgical treatment among patients with Vancouver B2 and B3 PFFs. METHODS: This retrospective study evaluated the surgical outcomes of patients with Vancouver B2 and B3 PFFs between 2007 and 2011. The minimum follow-up time was eight years. Fracture healing, prosthesis stability, complications, patient quality of life SF-36 score, and survival rate were evaluated during the follow-up assessments. RESULTS: A total of 83 patients were included and had an average follow-up period of 120.3 months. Among these patients, 69 were classified as Vancouver B2 and were treated with a distal fixation stem, whereas 14 cases were classified as Vancouver B3 and were treated with modular femoral prosthesis by using a proximal femoral allograft technique. A total of 15 patients underwent secondary revision surgery, and prosthesis dislocation was identified as the main cause of secondary revision. 80 (96.4%) cases of fractures were clinically healed. The mortality rate in the first year after surgery was 8.4% (7/83). The overall 5-year Kaplan-Meier survival rate for these patients was 75.9%. Meanwhile, the 5-year Kaplan-Meier survival rate for the implants was 86.9%. The final follow-up SF-36 score of the patients was 48.3 ± 9.8. CONCLUSIONS: Patients with Vancouver B2 and B3 PFFs show high mortality in the first year after their surgery, and the Kaplan-Meier analysis results showed that such mortality tends to plateau after 5 years. Prosthesis dislocation was identified as the primary cause of secondary revision.


Assuntos
Artroplastia de Quadril , Fraturas do Fêmur , Fraturas Periprotéticas , Idoso , Feminino , Fraturas do Fêmur/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Fraturas Periprotéticas/cirurgia , Qualidade de Vida , Reoperação , Estudos Retrospectivos , Resultado do Tratamento
7.
Langmuir ; 33(11): 2861-2871, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28233500

RESUMO

We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

8.
J Chem Phys ; 146(20): 204103, 2017 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-28571326

RESUMO

We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.

9.
Sheng Li Xue Bao ; 67(2): 201-6, 2015 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-25896051

RESUMO

This study was aimed to establish an experimental mouse model of combined transgenic inhibition of both multifunctional Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and inward rectifier potassium current (Ik1), and to observe whether the specific inhibition of both CaMKII and Ik1 can bring about any effects on cardiac remodeling. Mice were divided into 4 groups: wild type (WT), CaMKII inhibited (AC3-I), Ik1 inhibited (Kir2.1-AAA) and combined inhibition of both CaMKII and Ik1 (AC3-I+Kir2.1-AAA). Mice in each group received electrocardiogram (ECG) and echocardiography examination. ECG in the condition of isoproterenol (ISO) injection was also checked. The whole cell patch clamp technique was used to measure Ik1 and the transient outward potassium current (Ito) from enzymatically isolated myocytes of left ventricle. In the condition of basal status, no significant changes of heart rate, PR interval and QRS interval were observed. No mouse showed ventricular arrhythmias in all of the 4 groups. After ISO injection, each group presented no significant ventricular arrhythmias either. The indexes measured by M-mode (motion-mode) and two-dimensional echocardiography had no significant differences among the four groups. Ik1 in AC3-I group was significantly higher than those in other three groups (P < 0.01) because of the results brought about by CaMKII inhibition. Among the latter three groups, both Kir2.1-AAA group and AC3-I+Kir2.1-AAA group had a significant reduced Ik1 compared with that of WT group, which was due to the Ik1 inhibition (P < 0.01). Ito in AC3-I group was higher than that of the other three groups (P < 0.01), but there were no significant differences in Ito among WT, Kir2.1-AAA and AC3-I+Kir2.1-AAA groups. Thus, combined transgenic myocardial CaMKII and Ik1 inhibition eliminated the up-regulation of Ik1 in CaMKII inhibited mice, and had no effects on cardiac remodeling including heart structure and function as well as arrhythmias at the basic and ISO conditions. The results of this study may provide a basis for the further investigation of combined inhibition of CaMKII and Ik1 in pathogenic cardiac remodeling.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Coração/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Remodelação Ventricular , Animais , Arritmias Cardíacas , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Modelos Animais de Doenças , Eletrocardiografia , Sistema de Condução Cardíaco/anormalidades , Ventrículos do Coração , Isoproterenol , Camundongos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Regulação para Cima
10.
Zhonghua Nan Ke Xue ; 20(8): 715-8, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25195368

RESUMO

OBJECTIVE: To investigate the pathogenic infection and its drug resistance in expressed prostatic secretion (EPS) and its correlation with serum PSA, and provide some evidence for the systematic and normalized diagnosis and treatment of prostatitis. METHODS: Three EPS swabs were collected from each of the 320 prostatis patients following measurement of the serum PSA level, 1 for bacterial culture and identification, 1 for detection of Mycoplasma and drug sensitivity, and the other for examination of Chlamydia trachomatis antigen by colloidal gold immunoblot. RESULTS: Totally 244 strains were isolated from the 320 EPS samples, including 188 bacterial strains (dominated by Staphylococcus and sensitive to vancomycin or linezolid) and 44 Mycoplasma and Chlamydia strains (mainly Ureaplasma urealyticum and susceptible to josamycin or doxycycline). The serum PSA level was significantly higher in the pathogen-positive than in the pathogen-negative group ([6.98 +/- 0.56] microg/L vs [2.32 +/- 0.12] microg/L, P < 0.05). CONCLUSION: Prostatitis may lead to the elevation of the serum PSA level and the pathogens involved vary in their resistance to different antibacterial spectrums. Therefore, appropriate and individualized antibiotic therapy should be selected according to etiological diagnosis and the results of drug sensitivity test.


Assuntos
Antígeno Prostático Específico/sangue , Prostatite/microbiologia , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/metabolismo , Próstata/microbiologia , Prostatite/sangue , Adulto Jovem
11.
Polymers (Basel) ; 16(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38543371

RESUMO

The droplet microfluidic device has become a widely used tool in fields such as physics, chemistry, and biology, but its complexity has limited its widespread application. This report introduces a modular and cost-effective droplet microfluidic device for the controlled production of complex emulsions, including oil and aqueous single emulsions, and double emulsions with varying numbers of encapsulated droplets. The droplet sizes can be precisely controlled by easily replacing flat needles and adjusting the needle position within an axially accelerated co-flow field. This modular device not only allows for easy repair and maintenance in case of device clogging or damage but can also be readily expanded to produce complex emulsions. The low-cost and user-friendly nature of the device greatly facilitates the widespread adoption and utilization of droplet microfluidics.

12.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6557-6567, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34874870

RESUMO

This article proposes two adaptive asymptotic tracking control schemes for a class of interconnected systems with unmodeled dynamics and prescribed performance. By applying an inherent property of radial basis function (RBF) neural networks (NNs), the design difficulties aroused from the unknown interactions among subsystems and unmodeled dynamics are overcome. Then, in order to ensure that the tracking errors can be suppressed in the specified range, the constrained control problem is transformed into the stabilization problem by using an auxiliary function. Based on the adaptive backstepping method, a time-triggered controller is constructed. It is proven that under the framework of Barbalat's lemma, all the variables in the closed-loop system are bounded and the tracking errors are further ensured to converge to zero asymptotically. Furthermore, the event-triggered strategy with a variable threshold is adopted to make more precise control such that the better system performance can be obtained, which reduces the system communication burden under the condition of limited communication resources. Finally, an illustrative example is provided to demonstrate the effectiveness of the proposed control scheme.

13.
Micromachines (Basel) ; 14(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630184

RESUMO

Liver diseases are the primary reason for morbidity and mortality in the world. Owing to a shortage of organ donors and postoperative immune rejection, patients routinely suffer from liver failure. Unlike 2D cell models, animal models, and organoids, 3D bioprinting can be successfully employed to print living tissues and organs that contain blood vessels, bone, and kidney, heart, and liver tissues and so on. 3D bioprinting is mainly classified into four types: inkjet 3D bioprinting, extrusion-based 3D bioprinting, laser-assisted bioprinting (LAB), and vat photopolymerization. Bioinks for 3D bioprinting are composed of hydrogels and cells. For liver 3D bioprinting, hepatic parenchymal cells (hepatocytes) and liver nonparenchymal cells (hepatic stellate cells, hepatic sinusoidal endothelial cells, and Kupffer cells) are commonly used. Compared to conventional scaffold-based approaches, marked by limited functionality and complexity, 3D bioprinting can achieve accurate cell settlement, a high resolution, and more efficient usage of biomaterials, better mimicking the complex microstructures of native tissues. This method will make contributions to disease modeling, drug discovery, and even regenerative medicine. However, the limitations and challenges of this method cannot be ignored. Limitation include the requirement of diverse fabrication technologies, observation of drug dynamic response under perfusion culture, the resolution to reproduce complex hepatic microenvironment, and so on. Despite this, 3D bioprinting is still a promising and innovative biofabrication strategy for the creation of artificial multi-cellular tissues/organs.

14.
Imeta ; 2(4): e133, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38868220

RESUMO

The prevalence of cadmium (Cd)-polluted agricultural soils is increasing globally, and arbuscular mycorrhizal fungi (AMF) can reduce the absorption of heavy metals by plants and improve mineral nutrition. However, the immobilization of the rhizosphere on cadmium is often overlooked. In this study, Glomus mosseae and Medicago sativa were established as symbiotes, and Cd migration and environmental properties in the rhizosphere were analyzed. AMF reduced Cd migration, and Cd2+ changed to an organic-bound state. AMF symbiosis treatment and Cd exposure resulted in microbial community variation, exhibiting a distinct deterministic process (|ßNTI| > 2), which ultimately resulted in a core microbiome function of heavy metal resistance and nutrient cycling. AMF increased available N and P, extracellular enzyme activity (LaC, LiP, and CAT), organic matter content (TOC, EOC, and GRSP), and Eh of the rhizosphere soil, significantly correlating with decreased Cd migration (p < 0.05). Furthermore, AMF significantly affected root metabolism by upregulating 739 metabolites, with flavonoids being the main factor causing microbiome variation. The structural equation model and variance partial analysis revealed that the superposition of the root metabolites, microbial, and soil exhibited the maximum explanation rate for Cd migration reduction (42.4%), and the microbial model had the highest single explanation rate (15.5%). Thus, the AMF in the rhizosphere microenvironment can regulate metabolite-soil-microbial interactions, reducing Cd migration. In summary, the study provides a new scientific explanation for how AMF improves plant Cd tolerance and offers a sustainable solution that could benefit both the environment and human health.

15.
Heliyon ; 9(2): e13173, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36785828

RESUMO

The Youganwo Formation oil shale located in the Maoming Basin represents a large commercially valuable lacustrine oil shale resource and a potential bio-shale gas reservoir in South China. With the aim of deepening the understanding of factors that influence organic matter enrichment, this research conducted a geochemical investigation to reconstruct the depositional paleoenvironment of bioproductivity, preservation and dilution. Youganwo Formation oil shale is mainly deposited in semi-deep to deep-lake environments with relatively warm and humid paleoclimate in the subtropical-temperate zone. The total organic carbon (TOC) content (1.46-11.85%), S2 values (4.79-115.80 mg HC/mg rock) and HI (328-1040 mg HC/mg TOC) indicate that the oil shale has a good oil source rock potential. TOC content, (S1 + S2) values and vitrinite reflectance values show that its marginally mature organic matter (OM) belongs to kerogen type I-III with good oil-generating potential. A 3rd order sequence was identified in the Yougnwo formation. Subsequently, the multiple factors including bioproductivity, preservation and dilution that control the OM enrichment of oil shale within system tracts were discussed. Moderate-quality oil shales (Oy-1) were developed in the transgressive systems tract (TST) in an oxidizing condition with abundant detrital input. High-quality oil shales (Oy-2) were deposited during the high-stand systems tract (HST) with increased accommodation space, improved preservation conditions, warm and humid climate, higher water bioproductivity and minimum detrital matter input. During the regressive systems tract (RST, Oy-3), higher detrital matter input and fresher water led to lower TOC values. Among these multiple factors, dilution condition was the major one that influences OM abundance and variation on the basis of sufficient organic matter input. Thus, OM enrichment models of Oy-1, Oy-2 and Oy-3 sub-members were established. The OM enrichment and quality in oil shale were controlled by the combined effect of bioproductivity, preservation, and dilution.

16.
Materials (Basel) ; 16(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895761

RESUMO

The fabrication method plays a key role in the performance of lead magnesium niobate-lead titanate-based ceramics. (1 - w)[Pb(Mg1/3Nb2/3)0.67Ti0.33O3]-w[Pb1-1.5xSmx(Mg1/3Nb2/3)yTi1-yO3] piezoelectric ceramics were prepared by sintering the mixture of two different crystalline phases in which two pre-sintered precursor powders were mixed and co-fired at designated ratios (w = 0.3, 0.4, 0.5, 0.6). The X-ray diffraction results show that all the ceramics presented a pure perovskite structure. The grains were closely packed and the average size was ~5.18 µm based on observations from scanning electron microscopy images, making the ceramics have a high density that is 97.8% of the theoretical one. The piezoelectric, dielectric, and ferroelectric properties of the ceramics were investigated systematically. It was found that the properties of the ceramics were significantly enhanced when compared to the ceramics fabricated using the conventional one-step approach. An outstanding piezoelectric coefficient d33 of 1103 pC/N and relative dielectric permittivity ε33/ε0 of 9154 was achieved for the ceramics with w = 0.5.

17.
Shanghai Kou Qiang Yi Xue ; 32(5): 491-496, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-38171518

RESUMO

PURPOSE: To evaluate the accuracy of static guided implant placement with intraoral scanning technology and to analyze the influencing factors of guided surgery. METHODS: Totally 27 cases were included in this retrospective study. The implant designs were made in 3Shape Implant Studio and then guided implant surgeries were performed with CAD-CAM templates. Postoperative implant positions were detected with an intraoral scanner (3Shape TRIOS) and deviation of implantation was evaluated using established CAD/CAM based evaluation method. SAS 9.4 software package was used for data analysis. RESULTS: The mean deviation of entrance point and apical point was (1.182±0.609) mm and (1.658±0.741) mm, respectively. Angular deviation was (5.712±3.347)°. Implant quadrant, location of the implant site, guidance degree, supporting type and implant size influenced direction deviation, while angular deviation was mainly affected by guidance degree and number of missing teeth. CONCLUSIONS: Accuracy of static guided implant placement can be influenced by many factors. More research is needed to improve the accuracy of static guided implantation.


Assuntos
Implantes Dentários , Cirurgia Assistida por Computador , Implantação Dentária Endóssea/métodos , Estudos Retrospectivos , Tomografia Computadorizada de Feixe Cônico , Cirurgia Assistida por Computador/métodos , Desenho Assistido por Computador , Imageamento Tridimensional/métodos
18.
J Hazard Mater ; 435: 129077, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35650732

RESUMO

Cadmium (Cd) pollution in croplands is a global environmental problem. Measures to improve the tolerance of sensitive crops and reduce pollutant absorption and accumulation are needed in contaminated agricultural areas, and inoculation with rhizosphere microorganisms to regulate plant resistance and heavy metal transport can provide an effective solution. A pot experiment was conducted to analyse the impact of arbuscular mycorrhizal fungi (AMF) on alfalfa oxidase activity, heavy metal resistance genes and transport proteins, metabolism, and other biochemical regulation mechanisms that lead to complexation, compartmentalisation, efflux, enrichment, and antioxidant detoxification pathways. The AMF reduced shoot and protoplasm Cd inflow, and promoted organic compound production (e.g., by upregulating HM-Res4 for 1.2 times), to complex with Cd, reducing its biological toxicity. The AMF increased the ROS scavenging efficiency and osmotic regulatory substance content of the alfalfa plants, reduced oxidative stress (ROS dereased), and maintained homeostasis. It also alleviated Cd inhibition of photosynthetic electron transport, tricarboxylic acid circulation, and nitrogen assimilation. These AMF effects improved leaf and root biomass by 43.87% and 59.71% and facilitated recovery of a conservative root economic strategy. It is speculated that AMF induces the resistance signal switch by regulating the negative feedback regulation mode of indole acetic acid upward transport and methyl jasmonate downward transmission in plants.


Assuntos
Metais Pesados , Micorrizas , Poluentes do Solo , Cádmio/metabolismo , Medicago sativa/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/metabolismo
19.
Oxid Med Cell Longev ; 2022: 5585384, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450406

RESUMO

Heat shock protein 90 (HSP90) is widely found in brain tissue. HSP90 inhibition has been proven to have neuroprotective effects on ischemic strokes. In order to study the role of HSP90 in traumatic brain injury (TBI), we carried out the present study. A novel inhibitor of the HSP90 protein, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DA), has been investigated for its function on the blood-brain barrier (BBB) damage after traumatic brain injury (TBI) in mouse models. These C57BL/6 mice were used as a TBI model and received 17-DA (0.1 mg/kg/d, intraperitoneally) until the experiment ended. To find out whether 17-DA may protect against TBI in vitro, bEnd.3 cells belonging to mouse brain microvascular endothelium were used. The HSP90 protein expressions were raised after TBI at the pericontusional area, especially at 3 d. Our study suggested that 17-DA-treated mice improved the recovery ability of neurological deficits and decreased brain edema, Evans blue extravasation, and the loss of tight junction proteins (TJPs) post-TBI. 17-DA significantly promoted cell proliferation and alleviated apoptosis by inhibiting the generation of intracellular reactive oxygen species (ROS) to downregulate cleaved caspase-3, matrix metallopeptidase- (MMP-) 2, MMP-9, and P-P65 in bEnd.3 cells after the injury. As a result, we assumed that the HSP90 protein was activated post-TBI, and inhibition of HSP90 protein reduced the disruption of BBB and improved the neurobehavioral scores in a mouse model of TBI through the action of 17-DA, which inhibited ROS generation and regulated MMP-2, MMP-9, NF-κB, and caspase-associated pathways. Thus, blocking HSP90 protein may be a potential therapeutic strategy for TBI.


Assuntos
Barreira Hematoencefálica , Lesões Encefálicas Traumáticas , Animais , Barreira Hematoencefálica/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
20.
J Integr Plant Biol ; 52(10): 879-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20883440

RESUMO

Plant thioglucosidases are the only known S-glycosidases in the large superfamily of glycosidases. These enzymes evolved more recently and are distributed mainly in Brassicales. Thioglucosidase research has focused mainly on the cruciferous crops due to their economic importance and cancer preventive benefits. In this study, we cloned a novel myrosinase gene, CpTGG1, from Carica papaya Linnaeus. and showed that it was expressed in the aboveground tissues in planta. The recombinant CpTGG1 expressed in Pichia pastoris catalyzed the hydrolysis of both sinigrin and glucotropaeolin (the only thioglucoside present in papaya), showing that CpTGG1 was indeed a functional myrosinase gene. Sequence alignment analysis indicated that CpTGG1 contained all the motifs conserved in functional myrosinases from crucifers, except for two aglycon-binding motifs, suggesting substrate priority variation of the non-cruciferous myrosinases. Using sinigrin as substrate, the apparent K(m) and V(max) values of recombinant CpTGG1 were 2.82 mM and 59.9 µmol min⁻¹ mg protein⁻¹ , respectively. The K(cat) /K(m) value was 23 s⁻¹ mM⁻¹ . O-ß-glucosidase activity towards a variety of substrates were tested, CpTGG1 displayed substrate-dependent and ascorbic acid-independent O-ß-glucosidase activity towards 2-nitrophenyl-ß-D-glucopyranoside and 4-nitrophenyl-ß-D-glucopyranoside, but was inactive towards glucovanillin and n-octyl-ß-D-glucopyranoside. Phylogenetic analysis indicated CpTGG1 belongs to the MYR II subfamily of myrosinases.


Assuntos
Ácido Ascórbico/metabolismo , Carica/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Carica/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , beta-Glucosidase/química , beta-Glucosidase/classificação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa