Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Biol Evol ; 41(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829799

RESUMO

Global climate change has led to shifts in the distribution ranges of many terrestrial species, promoting their migration from lower altitudes or latitudes to higher ones. Meanwhile, successful invaders have developed genetic adaptations enabling the colonization of new environments. Over the past 40 years, Rattus tanezumi (RT) has expanded into northern China (Northwest and North China) from its southern origins. We studied the cold adaptation of RT and its potential for northward expansion by comparing it with sympatric Rattus norvegicus (RN), which is well adapted to cold regions. Through population genomic analysis, we revealed that the invading RT rats have split into three distinct populations: the North, Northwest, and Tibetan populations. The first two populations exhibited high genetic diversity, while the latter population showed remarkably low genetic diversity. These rats have developed various genetic adaptations to cold, arid, hypoxic, and high-UV conditions. Cold acclimation tests revealed divergent thermoregulation between RT and RN. Specifically, RT exhibited higher brown adipose tissue activity and metabolic rates than did RN. Transcriptome analysis highlighted changes in genes regulating triglyceride catabolic processes in RT, including Apoa1 and Apoa4, which were upregulated, under selection and associated with local adaptation. In contrast, RN showed changes in carbohydrate metabolism genes. Despite the cold adaptation of RT, we observed genotypic and phenotypic constraints that may limit its ability to cope with severe low temperatures farther north. Consequently, it is less likely that RT rats will invade and overlap with RN rats in farther northern regions.


Assuntos
Aclimatação , Temperatura Baixa , Animais , Ratos , Aclimatação/genética , China , Fenótipo , Variação Genética , Adaptação Fisiológica/genética , Regulação da Temperatura Corporal/genética , Mudança Climática
2.
Front Zool ; 15: 6, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483934

RESUMO

BACKGROUND: In rats, urine-borne male pheromones comprise organic volatile compounds and major urinary proteins (MUPs). A number of volatile pheromones have been reported, but no MUP pheromones have been identified in rat urine. RESULTS: We used sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), isoelectric focusing electrophoresis (IEF), nano-liquid chromatography-tandem mass spectrometry (nLC-MS/MS) after in gel digestion of the proteins and quantitative real-time PCR (qRT-PCR) and showed that the levels of two MUPs, odorant-binding protein 3 (OBP3) (i.e. PGCL4) and MUP13 (i.e. PGCL1), in urine and their mRNAs in liver were higher in males than in females and were suppressed by orchidectomy and restored by testosterone treatment (T treatment). We then generated recombinant MUPs (rMUPs) and found that the sexual attractiveness of urine from castrated males to females significantly increased after the addition of either recombinant OBP3 (rOBP3) or recombinant MUP13 (rMUP13). Using c-Fos immunohistochemistry, we further examined neuronal activation in the brains of female rats after they sniffed rOBP3 or rMUP13. Both rOBP3 and rMUP13 activated the accessory olfactory bulb (AOB), medial preoptic area (MPA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), posteromedial cortical amygdala (PMCo) and ventromedial nucleus of the hypothalamus (VMH), which participate in the neural circuits responsible for pheromone-induced sexual behaviours. In particular, more c-Fos-immunopositive (c-Fos-ir) cells were observed in the posterior AOB than in the anterior AOB. CONCLUSIONS: The expression of OBP3 and MUP13 was male-biased and androgen-dependent. They attracted females and activated brain areas related to sexual behaviours in female rats, suggesting that both OBP3 and MUP13 are male pheromones in rats. Particularly, an OBP excreted into urine was exemplified to be a chemical signal.

3.
Chem Senses ; 42(3): 247-257, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073837

RESUMO

Rats are predators of mice in nature. Nevertheless, it is a common practice to house mice and rats in a same room in some laboratories. In this study, we investigated the behavioral and physiological responsively of mice in long-term co-species housing conditions. Twenty-four male mice were randomly assigned to their original raising room (control) or a rat room (co-species-housed) for more than 6 weeks. In the open-field and light-dark box tests, the behaviors of the co-species-housed mice and controls were not different. In a 2-choice test of paired urine odors [rabbit urine (as a novel odor) vs. rat urine, cat urine (as a natural predator-scent) vs. rabbit urine, and cat urine vs. rat urine], the co-species-housed mice were more ready to investigate the rat urine odor compared with the controls and may have adapted to it. In an encounter test, the rat-room-exposed mice exhibited increased aggression levels, and their urines were more attractive to females. Correspondingly, the levels of major urinary proteins were increased in the co-species-housed mouse urine, along with some volatile pheromones. The serum testosterone levels were also enhanced in the co-species-housed mice, whereas the corticosterone levels were not different. The norepinephrine, dopamine, and 5-HT levels in the right hippocampus and striatum were not different between the 2. Our findings indicate that chronic co-species housing results in adaptation in male mice; furthermore, it appears that long-term rat-odor stimuli enhance the competitiveness of mice, which suggests that appropriate predator-odor stimuli may be important to the fitness of prey animals.


Assuntos
Comportamento Competitivo , Abrigo para Animais , Animais , Gatos , Corticosterona/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Odorantes/análise , Feromônios/urina , Coelhos , Ratos , Ratos Sprague-Dawley , Olfato , Urina/química
4.
Front Zool ; 14: 20, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413431

RESUMO

BACKGROUND: The Asian house rat (Rattus tanezumi) and the brown rat (Rattus norvegicus) are closely related species and are partially sympatric in southern China. Over the past 20 years, R. tanezumi has significantly expanded northward in China and partially replaced the native brown rat subspecies, R. n. humiliatus. Although invasive species are often more aggressive than native species, we did not observe interspecific physical aggression between R. tanezumi and R. n. humiliatus. Here, we focused on whether or not R. tanezumi was superior to R. n. humiliatus in terms of nonphysical competition, which is primarily mediated by chemical signals. RESULTS: We performed two laboratory experiments to test different paradigms in domesticated R. tanezumi and R. n. humiliatus. In Experiment 1, we caged adult male rats of each species for 2 months in heterospecific or conspecific pairs, partitioned by perforated galvanized iron sheets, allowing exchange of chemical stimuli and ultrasonic vocalization. The sexual attractiveness of male urine odor showed a tendency (marginal significance) to increase in R. tanezumi caged with R. n. humiliatus, compared with those in conspecific pairs. Hippocampal glucocorticoid receptor (GR) and brain-derived nutrition factor (BDNF) mRNA were upregulated in R. n. humiliatus and R. tanezumi, respectively, when the rats were caged in heterospecific pairs. In Experiment 2, we kept juvenile male rats in individual cages in rooms with either the same or the different species for 2 months, allowing chemical interaction. The sexual attractiveness of male urine was significantly enhanced in R. tanezumi, but reduced in R. n. humiliatus by heterospecific cues and mRNA expression of hippocampal GR and BDNF were upregulated by heterospecific cues in R. n. humiliatus and R. tanezumi, respectively. Although not identical, the results from Experiments 1 and 2 were generally consistent. CONCLUSIONS: The results of both experiments indicate that nonphysical/chronic interspecific stimuli, particularly scent signals, between R. n. humiliatus and R. tanezumi may negatively affect R. n. humiliatus and positively affect R. tanezumi. We infer that chronic interspecific interactions may have contributed to the invasion of R. tanezumi into the range of R. n. humiliatus in natural habitats.

5.
Mol Biol Evol ; 32(10): 2547-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26037536

RESUMO

The brown rat, Rattus norvegicus, is both a notorious pest and a frequently used model in biomedical research. By analyzing genome sequences of 12 wild-caught brown rats from their presumed ancestral range in NE China, along with the sequence of a black rat, Rattus rattus, we investigate the selective and demographic forces shaping variation in the genome. We estimate that the recent effective population size (Ne) of this species = [Formula: see text], based on silent site diversity. We compare patterns of diversity in these genomes with patterns in multiple genome sequences of the house mouse (Mus musculus castaneus), which has a much larger Ne. This reveals an important role for variation in the strength of genetic drift in mammalian genome evolution. By a Pairwise Sequentially Markovian Coalescent analysis of demographic history, we infer that there has been a recent population size bottleneck in wild rats, which we date to approximately 20,000 years ago. Consistent with this, wild rat populations have experienced an increased flux of mildly deleterious mutations, which segregate at higher frequencies in protein-coding genes and conserved noncoding elements. This leads to negative estimates of the rate of adaptive evolution (α) in proteins and conserved noncoding elements, a result which we discuss in relation to the strongly positive estimates observed in wild house mice. As a consequence of the population bottleneck, wild rats also show a markedly slower decay of linkage disequilibrium with physical distance than wild house mice.


Assuntos
Evolução Biológica , Animais , Sequência Conservada/genética , DNA Intergênico/genética , Éxons/genética , Genoma , Desequilíbrio de Ligação/genética , Camundongos , Mutação/genética , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único/genética , Densidade Demográfica , Ratos
6.
J Exp Zool B Mol Dev Evol ; 326(4): 225-36, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27283352

RESUMO

Phenotypic variation and its epigenetic regulations within the inbred isogenic mice have long intrigued biologists. Here, we used inbred C57BL/6 mice to examine the individual differences and the inheritance of social dominance and male pheromones, expecting to create a model for studying the underlying epigenetic mechanisms for the evolution of these traits. We used a repeated male-male contest paradigm to form stable dominance-submission relationships between paired males and make superior or inferior quality manifest. Females showed olfactory preferences for the urine of dominant males to that of subordinate opponents. Gas chromatography-mass spectrometer analysis revealed that dominance-related or superior quality related pheromones were actually exaggerated male pheromone components (e.g., E-ß-farnesene, hexadecanol, and 1-hexadecanol acetate) of preputial gland origin. Although the socially naïve sons of both dominant and subordinate males elicited the same female attraction when reaching adulthood, the former could dominated over the latter during undergoing the male-male competition and then gained more attraction of females. Our results demonstrated that social dominance or superior quality and the related pheromones were heritable and could be expressed through the interaction between aggression-related epigenotypes and male-male contests. It suggested that the evolution of sexually selected traits could be epigenetically determined and promoted through female mate choice. The epigenetic mechanisms driving the individual differences in behavior and male pheromones deserve further studies.


Assuntos
Atrativos Sexuais/fisiologia , Predomínio Social , Agressão , Animais , Epigênese Genética , Álcoois Graxos/urina , Feminino , Masculino , Camundongos Endogâmicos C57BL , Sesquiterpenos/urina , Atrativos Sexuais/genética , Atrativos Sexuais/urina , Comportamento Social
7.
Curr Zool ; 70(4): 531-538, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39176055

RESUMO

The ability to recognize and differentiate between conspecifics and heterospecifics as well as their signals is critical for the coexistence of closely related species. In the genus Rattus, species are morphologically similar and multiple species often coexist. Here, we investigated the interspecific recognition and signal differentiation of two sympatric rat species, the brown rat (Rattus norvegicus, RN) and the Asian house rat (Rattus tanezumi, RT). In a two-way choice test, both RN and RT females showed a preference for conspecific male rats to heterospecific ones. RT females showed a significant preference for accessible urine of males of same species to those of other species, but not for the inaccessible urine. On the other hand, there were significant differences in the structural characteristics of the ultrasonic vocalization emitted by males of these two rat species. Sodium dodecyl sulphate‒polyacrylamide gel electrophoresis (SDS‒PAGE) and isoelectric focusing electrophoresis unveiled that major urinary proteins (MUPs) in voided urine were more highly expressed in RN males versus RT males. The interspecific differences of urinary volatile compounds were also discussed. In conclusion, female rats had the ability to distinguish between males of either species.

8.
J Zhejiang Univ Sci B ; 25(10): 841-856, 2024 Jul 09.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-39420521

RESUMO

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.


Assuntos
Asseio Animal , Roedores , Animais , Asseio Animal/fisiologia , Roedores/fisiologia , Ratos , Camundongos , Comportamento Animal , Comportamento Social , Humanos , Encéfalo/fisiologia
9.
J Zhejiang Univ Sci B ; : 1-16, 2024 Jul 09.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38993075

RESUMO

Grooming, as an evolutionarily conserved repetitive behavior, is common in various animals, including humans, and serves essential functions including, but not limited to, hygiene maintenance, thermoregulation, de-arousal, stress reduction, and social behaviors. In rodents, grooming involves a patterned and sequenced structure, known as the syntactic chain with four phases that comprise repeated stereotyped movements happening in a cephalocaudal progression style, beginning from the nose to the face, to the head, and finally ending with body licking. The context-dependent occurrence of grooming behavior indicates its adaptive significance. This review briefly summarizes the neural substrates responsible for rodent grooming behavior and explores its relevance in rodent models of neuropsychiatric disorders and neurodegenerative diseases with aberrant grooming phenotypes. We further emphasize the utility of rodent grooming as a reliable measure of repetitive behavior in neuropsychiatric models, holding promise for translational psychiatry. Herein, we mainly focus on rodent self-grooming. Allogrooming (grooming being applied on one animal by its conspecifics via licking or carefully nibbling) and heterogrooming (a form of grooming behavior directing towards another animal, which occurs in other contexts, such as maternal, sexual, aggressive, or social behaviors) are not covered due to space constraints.

10.
Curr Zool ; 69(2): 143-155, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37092005

RESUMO

Dominance relationships between males and their associated traits are usually heritable and have implications for sexual selection in animals. In particular, social dominance and its related male pheromones are heritable in inbred mice; thus, we wondered whether epigenetic changes due to altered levels of DNA methylation determine inheritance. Here, we used C57BL/6 male mice to establish a social dominance-subordination relationship through chronic dyadic encounters, and this relationship and pheromone covariation occurred in their offspring, indicative of heritability. Through transcriptome sequencing and whole-genome DNA methylation profiling of the sperm of both generations, we found that differential methylation of many genes was induced by social dominance-subordination in sires and could be passed on to the offspring. These methylated genes were mainly related to growth and development processes, neurodevelopment, and cellular transportation. The expression of the genes with similar functions in whole-genome methylation/bisulfite sequencing was also differentiated by social dominance-subordination, as revealed by RNA-seq. In particular, the gene Dennd1a, which regulates neural signaling, was differentially methylated and expressed in the sperm and medial prefrontal cortex in paired males before and after dominance-subordination establishment, suggesting the potential epigenetic control and inheritance of social dominance-related aggression. We suggest that social dominance might be passed on to male offspring through sperm DNA methylation and that the differences could potentially affect male competition in offspring by affecting the development of the nervous system.

11.
iScience ; 26(10): 107742, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731619

RESUMO

For mammals that originate in the cold north, adapting to warmer environments is crucial for southwards invasion. The brown rat (Rattus norvegicus) originated in Northeast China and has become a global pest. R. n. humiliatus (RNH) spread from the northeast, where R. n. caraco (RNC) lives, to North China and diverged to form a subspecies. Genomic analyses revealed that subspecies differentiation was promoted by temperature but impeded by gene flow and that genes related to fatty acid metabolism were under the strongest selection. Transcriptome analyses revealed downregulated hepatic genes related to fatty acid metabolism and upregulated those related to pheromones in RNH vs. RNC. Similar patterns were observed in relation to cold/warm acclimation. RNH preferred mates with stronger pheromone signals intra-populationally and more genetic divergence inter-populationally. We concluded that RNH experienced reduced fat utilization and increased pheromone-mediated sexual selection during its invasion from the cold north to warm south.

12.
Chem Senses ; 36(2): 125-35, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20978136

RESUMO

Olfactory cues play a vital role in kin recognition and mate choice of the rat. Here, using 2 inbred strains of rats, Brown Norway (BN) and Lewis, as models to simulate kinship via genetic distance, we examined whether urine-derived volatiles are genetically determined, and, if so, how they code for olfactory information and the degree of genetic relatedness in mate choice. Binary choice tests showed that BN females preferred the urine odor of Lewis males over that of BN males, suggesting that they avoided males genetically similar to themselves and were able to assess this olfactorily. Gas chromatography-mass spectrometry analysis revealed that the composition of urine-derived volatiles was more similar within strains than between strains and suggests that odortypes may reflect genetic relatedness. Our data further show that BN males had lower ratios of 2-heptanone and 4-heptanone and higher ratios of dimethyl sulfone and 4-ethyl phenol than Lewis males. When we supplemented BN and Lewis male urine to make each similar, the preferences of BN females were reversed. We conclude that some urine-derived volatiles covary in relative abundance with degree of genetic relatedness, and this relationship may play a key role in chemical signaling and genetic identity in this species.


Assuntos
Filogenia , Reconhecimento Psicológico , Atrativos Sexuais/genética , Atrativos Sexuais/urina , Animais , Dimetil Sulfóxido/urina , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/urina , Masculino , Percepção Olfatória , Fenóis/urina , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos Lew , Especificidade da Espécie , Sulfonas/urina , Volatilização
13.
Chem Senses ; 36(9): 799-810, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21745800

RESUMO

Individual recognition has been studied across a number of taxa and modalities; however, few attempts have been made to combine chemical and biological approaches and arrive at a more complete understanding of the use of secretions as signals. We combined behavioral habituation experiments with gas chromatography-mass spectrometry of glandular secretions from the left and right flank gland and midventral gland of the rat-like hamster, Tscheskia triton. We found that females became habituated to one scent and then could discriminate individuals via another scent source from the same individual only when familiar with the scent donor. However, this prior social interaction was not required for females to discriminate different individuals in single-stimulus habituation-dishabituation tests. Chemical analyses revealed a similarity in volatile compounds between the left and right flank gland and midventral gland scents. It appears that individually distinctive cues are integratively coded by a combination of both flank gland and midventral gland secretions, instead of a single scent, albeit animals show different preferences to the novel scent. Our results suggest that odors from the flank and midventral glands may provide information related to individuality and aid individual recognition in this species and confirm that prior interaction between individuals is a prerequisite for rat-like hamsters to form multi-odor memory of a particular conspecific.


Assuntos
Odorantes , Comportamento Sexual Animal/fisiologia , Olfato/fisiologia , Animais , Cromatografia Gasosa , Cricetinae , Feminino , Masculino , Memória/fisiologia , Glândulas Odoríferas/fisiologia
14.
Curr Zool ; 67(4): 371-382, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34671704

RESUMO

Pheromonal communication plays a key role in the sociosexual behavior of rodents. The coadaptation between pheromones and chemosensory systems has been well illustrated in insects but poorly investigated in rodents and other mammals. We aimed to investigate whether coadaptation between male pheromones and female reception might have occurred in brown rats Rattus norvegicus. We recently reported that major urinary protein (MUP) pheromones are associated with male mating success in a brown rat subspecies, R. n. humiliatus (Rnh). Here, we discovered that MUPs were less polymorphic and occurred at much lower concentrations in males of a parapatric subspecies, R. n. caraco (Rnc), than in Rnh males, and found no association between pheromones and paternity success. Moreover, the observation of Rnc males that experienced chronic dyadic encounters and established dominance-submission relationships revealed that the dominant males achieved greater mating success than the subordinate males, but their MUP levels did not differ by social status. These findings suggest that male mating success in Rnc rats is related to social rank rather than to pheromone levels and that low concentration of MUPs might not be a reliable signal for mate choice in Rnc rats, which is different from the findings obtained in Rnh rats. In addition, compared with Rnh females, Rnc females exhibited reduced expression of pheromone receptor genes, and a lower number of vomeronasal receptor neurons were activated by MUP pheromones, which imply that the female chemosensory reception of pheromones might be structurally and functionally coadapted with male pheromone signals in brown rats.

15.
Proc Biol Sci ; 277(1696): 3009-18, 2010 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-20462911

RESUMO

Chemical signals play an important role in spider sexual communication, yet the chemistry of spider sex pheromones remains poorly understood. Chemical identification of male-produced pheromone-mediating sexual behaviour in spiders has also, to our knowledge, not been reported before. This study aimed to examine whether chemically mediated strategies are used by males of the spider Pholcus beijingensis for increasing the probability of copulation. Based on data from gas chromatography-mass spectrometry analysis, electroantennography assay and a series of behavioural tests, we verified that (Z)-9-tricosene is a male-specific compound in the spider P. beijingensis. This compound acts as an aphrodisiac: it increases the likelihood that a female will mate. Mate-searching males release (Z)-9-tricosene to stimulate sexual behaviour of conspecific females. In the two-choice assay, however, sexually receptive females show no preference to the chambers containing (Z)-9-tricosene. This indicates that the male pheromone of P. beijingensis is not an attractant per se to the conspecific females. This is, to our knowledge, the first identification of a male-produced aphrodisiac pheromone in spiders.


Assuntos
Atrativos Sexuais/farmacologia , Comportamento Sexual Animal/efeitos dos fármacos , Aranhas/fisiologia , Animais , Comportamento de Escolha/efeitos dos fármacos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Atrativos Sexuais/química , Atrativos Sexuais/metabolismo
16.
Chem Senses ; 35(1): 47-56, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20019156

RESUMO

The immunocompetence handicap hypothesis (ICHH) posits that females prefer signals emitted by immunocompetent males over immunocompromised males and that these signals are honest. However, mechanisms of mate choice under an ICHH model may be impacted by levels of genetic variation (inbred animals vs. outbred animals). Here, we conducted 2-choice female preference experiments and chemical analyses of male urine in inbred BALB/c and outbred CD-1 mice, both of which have immunocompromised nude (nu) strains resulting from a Foxn1 gene knockout. We found that inbred BALB/c females but not outbred CD-1 females preferred the urine of healthy males over that of immunocompromised males despite measured differences in the qualities of their urine. There was a clear increase in female-attracting pheromones (such as farnesenes) in the preputial glands and urine metabolites in healthy BALB/c males but no such difference between CD-1 and CD-1 nu males. Therefore, CD-1 male urine failed to provide an honest mate-choice cue for females. Our results suggest that deleterious traits associated with male odor in mice might be jointly affected by the level of inbreeding and immunodeficiency caused by a single-gene knockout.


Assuntos
Fatores de Transcrição Forkhead/genética , Endogamia , Atrativos Sexuais/urina , Animais , Feminino , Fatores de Transcrição Forkhead/deficiência , Masculino , Preferência de Acasalamento Animal , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
17.
Chem Senses ; 35(5): 375-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20212012

RESUMO

The possible role of uropygial gland-secreted compounds in olfactory discrimination of sex or sex attractants in the budgerigar, Melopsittacus undulatus, was investigated using behavioral 2-choice tests and gas chromatography-mass spectrometry analysis. Our data showed that female budgerigars were capable of distinguishing males from females in a Y maze via body odor, indicating its sexual dimorphism. When we conducted a chemical assay of the uropygial preen gland secretions, we found 4 times more volatile octadecanol, nonadecanol, and eicosanol in ratios in males than in females, making them putative male pheromone candidates. Female birds also showed overt preferences for the odor of male preen gland secretions or the 3-alkanol blend equivalent preened onto the plumage of a male over that of female counterparts. Removal of any one alkanol was associated with a loss of attractiveness to the female. In another test device (a test cage) with visible male bird stimulus, females chose the male with the 3-alkanol blend of males over the other male with female preen gland secretion, whereas did not differentiate their responses between the males with either this blend or male preen gland secretions. The behavioral data robustly suggested that the 3 alkanols synergistically created a female attractant odor or male pheromone in the budgerigar and that bird uropygial glands have broader implications in sexual behavior than previously known. This is the first investigation with bioassay of components of the gland in a bird species.


Assuntos
Álcoois Graxos/metabolismo , Melopsittacus/fisiologia , Feromônios/fisiologia , Glândulas Odoríferas/química , Atrativos Sexuais/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Aves , Corte/psicologia , Cricetinae , Feminino , Masculino , Preferência de Acasalamento Animal/fisiologia , Mariposas , Fatores Sexuais , Transdução de Sinais/fisiologia , Olfato/fisiologia , Comportamento Social
18.
Curr Zool ; 66(6): 677-688, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391367

RESUMO

Two parapatric Rattus norvegicus subspecies, R. n. humiliatus (RNH) and R. n. caraco (RNC), are classified according to morphological divergence and are mainly distributed in North and Northeast China. Here, we aimed to explore the population genetic structure, genetic boundary, and gene flow in these rats using 16 microsatellite loci. Structure analysis and principal component analysis revealed 3 ancestral clusters. We found that the intermediate cluster exhibited higher genetic diversity and a lower inbreeding coefficient than the other 2 clusters. The genetic differentiation between the 3 clusters was significant but weak, with a higher FST value being observed between the clusters on both sides. The subspecies boundary inferred from microsatellite markers may indicate the existence of an admixture or hybridization area covering Liaoning, Inner Mongolia, and Jilin Provinces, rather than corresponding to the administrative provincial boundaries between Liaoning and Jilin. The RNH and RNC subspecies presented moderate gene exchange and an asymmetric bidirectional gene flow pattern, with higher gene flow from the RNH subspecies to the RNC subspecies, constraining speciation. Such genetic characteristics might be explained by biological processes such as dispersal ability, mate choice, and dynamic lineage boundaries.

19.
Front Cell Neurosci ; 13: 455, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632243

RESUMO

Hexadecanol (16OH) and hexadecyl acetate (16Ac) are two pheromones secreted in a large quantity by mouse preputial glands and act on male and female mice differentially. Yet the underlying molecular and cellular mechanisms remain to be elucidated. In this study, we examined the activation of vomeronasal sensory neurons (VSNs) by these two pheromones and mapped the downstream neural circuits that process and relay their chemosignals. Using the calcium imaging method and immunohistochemistry, we found that a small number of VSNs were activated by 16OH, 16AC, or both in the male and female mice, most of which were located apically in the vomeronasal epithelium, and their numbers did not increase when the concentrations of 16OH and 16Ac were raised by 10,000-fold except that of female VSNs in response to 16OH. In the accessory olfactory bulb (AOB), the two pheromones evoked more c-Fos+ neurons in the anterior AOB (aAOB) than in the posterior AOB (pAOB); and the increases in the number of c-Fos+ neurons in both aAOB and pAOB were dose-dependent; and between sexes, the female AOB responded more strongly to 16OH than to 16Ac whereas the male AOB had the opposite response pattern. This sexual dimorphism was largely retained in the downstream brain regions, including the bed nucleus of the stria terminalis (BNST), the medial amygdaloid nucleus (MeA), the posteromedial cortical amygdaloid nucleus (PMCo), the medial preoptic area (MPA), and the ventromedial hypothalamic nucleus (VmH). Taken together, out data indicate that there is one V1r receptor each for 16OH, 16Ac, or both, and that activation of these receptors evokes sexually dimorphic neural circuits, directing different behavioral outputs and possibly modulating other pheromone-induced responses.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa