Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2695, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538640

RESUMO

Global potent greenhouse gas nitrous oxide (N2O) emissions from soil are accelerating, with increases in the proportion of reactive nitrogen emitted as N2O, i.e., N2O emission factor (EF). Yet, the primary controls and underlying mechanisms of EFs remain unresolved. Based on two independent but complementary global syntheses, and three field studies determining effects of acidity on N2O EFs and soil denitrifying microorganisms, we show that soil pH predominantly controls N2O EFs and emissions by affecting the denitrifier community composition. Analysis of 5438 paired data points of N2O emission fluxes revealed a hump-shaped relationship between soil pH and EFs, with the highest EFs occurring in moderately acidic soils that favored N2O-producing over N2O-consuming microorganisms, and induced high N2O emissions. Our results illustrate that soil pH has a unimodal relationship with soil denitrifiers and EFs, and the net N2O emission depends on both the N2O/(N2O + N2) ratio and overall denitrification rate. These findings can inform strategies to predict and mitigate soil N2O emissions under future nitrogen input scenarios.


Assuntos
Agricultura , Solo , Solo/química , Óxido Nitroso/análise , Fertilizantes/análise , Nitrogênio , Concentração de Íons de Hidrogênio , Microbiologia do Solo , Desnitrificação
2.
mLife ; 2(4): 389-400, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38818267

RESUMO

Soil microorganisms critically affect the ecosystem carbon (C) balance and C-climate feedback by directly controlling organic C decomposition and indirectly regulating nutrient availability for plant C fixation. However, the effects of climate change drivers such as warming, precipitation change on soil microbial communities, and C dynamics remain poorly understood. Using a long-term field warming and precipitation manipulation in a semi-arid grassland on the Loess Plateau and a complementary incubation experiment, here we show that warming and rainfall reduction differentially affect the abundance and composition of bacteria and fungi, and soil C efflux. Warming significantly reduced the abundance of fungi but not bacteria, increasing the relative dominance of bacteria in the soil microbial community. In particular, warming shifted the community composition of abundant fungi in favor of oligotrophic Capnodiales and Hypocreales over potential saprotroph Archaeorhizomycetales. Also, precipitation reduction increased soil total microbial biomass but did not significantly affect the abundance or diversity of bacteria. Furthermore, the community composition of abundant, but not rare, soil fungi was significantly correlated with soil CO2 efflux. Our findings suggest that alterations in the fungal community composition, in response to changes in soil C and moisture, dominate the microbial responses to climate change and thus control soil C dynamics in semi-arid grasslands.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa