Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 25(9): e202400094, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488304

RESUMO

Phosphorescent iridium(III) complexes are widely recognized for their unique properties in the excited triplet state, making them crucial for various applications including biological sensing and imaging. Most of these complexes display single phosphorescence emission from the lowest-lying triplet state after undergoing highly efficient intersystem crossing (ISC) and ultrafast internal conversion (IC) processes. However, in cases where these excited-state processes are restricted, the less common phenomenon of dual emission has been observed. This dual emission phenomenon presents an opportunity for developing biological probes and imaging agents with multiple emission bands of different wavelengths. Compared to intensity-based biosensing, where the existence and concentration of an analyte are indicated by the brightness of the probe, the emission profile response involves modifications in emission color. This enables quantification by utilizing the intensity ratio of different wavelengths, which is self-calibrating and unaffected by the probe concentration and excitation laser power. Moreover, dual-emissive probes have the potential to demonstrate distinct responses to multiple analytes at separate wavelengths, providing orthogonal detection capabilities. In this concept, we focus on iridium(III) complexes displaying fluorescence-phosphorescence or phosphorescence-phosphorescence dual emission, along with their applications as biological probes for sensing and imaging.


Assuntos
Complexos de Coordenação , Irídio , Irídio/química , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Humanos , Técnicas Biossensoriais/métodos , Imagem Óptica , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Animais , Medições Luminescentes , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química
2.
Angew Chem Int Ed Engl ; 62(37): e202309178, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37503796

RESUMO

Phosphorescent probes often show sensitive response toward analytes at a specific wavelength. However, oxygen quenching usually occurs at the same wavelength and thus hinders the accurate detection of analytes. In this study, we have developed dual-emissive iridium(III) complexes that exhibit phosphorescence responses to copper(II) ions at a wavelength distinct from that where oxygen quenching occurs. The complexes displayed colorimetric phosphorescence response in aqueous solutions under different copper(II) and oxygen conditions. In cellular imaging, variation in oxygen concentration over a large range from 5 % to 80 % can modulate the intensity and lifetime of green phosphorescence without affecting the response of red phosphorescence toward intracellular copper(II) ions.

3.
J Am Chem Soc ; 142(2): 1057-1064, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31846307

RESUMO

Bis-labeling with a luminescent energy donor/acceptor pair onto biological substrates affords probes which give FRET readouts for the detection of interaction partners. However, the covalently bound luminophores bring about steric hindrance and nonspecific interaction, which probably perturb the biological recognition. Herein, we designed a highly sensitive and specific "labeling after recognition" sensing approach, where luminophore labeling occurred after the biological recognition. Taking the cutting enzyme caspase-3 as an example, we demonstrated the detection of its catalytic activity in solution and apoptotic cells using the tetrapeptide motif Asp-Glu-Val-Asp (DEVD) as the cleavable substrate, and an iridium(III) complex and a rhodamine derivative as the energy donor/acceptor pair. The DEVD tetrapeptide was modified with an azide and a GK-norbornylene groups at the amino and carboxyl terminuses, respectively, which allowed donor/acceptor bis-labeling via two independent catalysis-free bioorthogonal reactions. The phosphorescence lifetime of the iridium(III) complex was quenched upon bis-labeling owing to the intracellular FRET to the rhodamine derivative, and significantly elongated upon the peptide being catalytically cleaved by caspase-3. Interestingly, the sensitivity and efficiency of the lifetime responses were much higher in the "labeling after recognition" sensing approach. Molecular docking analysis showed that the steric hindrance and nonspecific interactions partially inhibited the biological recognition of the DEVD substrate by caspase-3. The imaging of the catalytic activity of caspase-3 in apoptotic cells was demonstrated via photoluminescence lifetime imaging microscopy. Lifetime analysis not only confirmed the occurrence of intracellular bioorthogonal bis-labeling and catalytic cleavage, but also showed the extent to which the two dynamic processes occurred.


Assuntos
Caspase 3/análise , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Catálise , Transferência Ressonante de Energia de Fluorescência , Humanos , Luminescência , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Especificidade por Substrato , Termodinâmica
4.
Chem Rev ; 118(4): 1770-1839, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29393632

RESUMO

In this Review article, we systematically summarize the design and applications of various kinds of long-lived emissive probes for bioimaging and biosensing via time-resolved photoluminescence techniques. The probes reviewed, including lanthanides, transition-metal complexes, organic dyes, carbon and silicon nanoparticles, metal clusters, and persistent phosphores, exhibit longer luminescence lifetimes than that of autofluorescence from biological tissue and organs. When these probes are internalized into living cells or animals, time-gated photoluminescence imaging selectively collects long-lived signals for intensity analysis, while photoluminescence lifetime imaging reports the decay details of each pixel. Since the long-lived signals are differentiated from autofluorescence in the time domain, the imaging contrast and sensing sensitivity are remarkably improved. The future prospects and challenges in this rapidly growing field are addressed.


Assuntos
Técnicas Biossensoriais , Medições Luminescentes , Sondas Moleculares , Animais , Humanos , Fatores de Tempo
5.
Chembiochem ; 20(4): 576-586, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30267457

RESUMO

It is a huge challenge to avoid irreversible damage to normal tissues during irradiation in photodynamic therapy (PDT) for cancer. An effective strategy is to develop smart photosensitizers, which exhibit amplified generation of reactive oxygen species (ROS) through triggering specific reaction in the tumor microenvironment. In this work, we designed a class of glutathione (GSH)-activatable photosensitizers (Ir1 and Ir4) based on an effective strategy of GSH-induced nucleophilic substitution reaction. The addition of GSH, induced changes in both phosphorescence intensity and lifetime of photosensitizers with high sensitivity. Importantly, the amount of singlet oxygen generated was increased significantly by GSH-induced activation reaction. Hence, the photosensitizers can selectively distinguish cancer cells from normal cells through luminescence and lifetime imaging, and can amplify PDT effects in cancer cells, owing to the evidently higher level of GSH compared to normal cells. This work presents a novel paradigm for GSH-amplified PDT against cancer cells and provides a new avenue for smart-responsive theranostic systems that can avoid nonspecific damage to normal cells.


Assuntos
Complexos de Coordenação/química , Glutationa/análise , Irídio/química , Fármacos Fotossensibilizantes/química , Células 3T3-L1 , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Teoria da Densidade Funcional , Glutationa/química , Humanos , Luz , Camundongos , Microscopia Confocal , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo
6.
J Am Chem Soc ; 140(25): 7827-7834, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29874455

RESUMO

Hypoxia and hyperoxia, referring to states of biological tissues in which oxygen supply is in sufficient and excessive, respectively, are often pathological conditions. Many luminescent oxygen probes have been developed for imaging intracellular and in vivo hypoxia, but their sensitivity toward hyperoxia becomes very low. Here we report a series of iridium(III) complexes in which limited internal conversion between two excited states results in dual phosphorescence from two different excited states upon excitation at a single wavelength. Structural manipulation of the complexes allows rational tuning of the dual-phosphorescence properties and the spectral profile response of the complexes toward oxygen. By manipulating the efficiency of internal conversion between the two emissive states, we obtained a complex exhibiting naked-eye distinguishable green, orange, and red emission in aqueous buffer solution under an atmosphere of N2, air, and O2, respectively. This complex is used for intracellular and in vivo oxygen sensing not only in the hypoxic region but also in normoxic and hyperoxic intervals. To the best of our knowledge, this is the first example of using a molecular probe for simultaneous bioimaging of hypoxia and hyperoxia.


Assuntos
Complexos de Coordenação/química , Hiperóxia , Hipóxia , Irídio/química , Substâncias Luminescentes/química , Oxigênio/análise , Humanos , Conformação Molecular
7.
Angew Chem Int Ed Engl ; 55(34): 9947-51, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27381490

RESUMO

Organelle-targeted photosensitizers have been reported to be effective photodynamic therapy (PDT) agents. In this work, we designed and synthesized two iridium(III) complexes that specifically stain the mitochondria and lysosomes of living cells, respectively. Both complexes exhibited long-lived phosphorescence, which is sensitive to oxygen quenching. The photocytotoxicity of the complexes was evaluated under normoxic and hypoxic conditions. The results showed that HeLa cells treated with the mitochondria-targeted complex maintained a slower respiration rate, leading to a higher intracellular oxygen level under hypoxia. As a result, this complex exhibited an improved PDT effect compared to the lysosome-targeted complex, especially under hypoxia conditions, suggestive of a higher practicable potential of mitochondria-targeted PDT agents in cancer therapy.


Assuntos
Complexos de Coordenação/farmacologia , Hipóxia , Irídio/farmacologia , Mitocôndrias/efeitos dos fármacos , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Células HeLa , Humanos , Irídio/química , Estrutura Molecular , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química
8.
Chemistry ; 21(30): 10729-40, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26096074

RESUMO

The synthesis, characterization, photophysics, lipophilicity, and cellular properties of new phosphorescent ruthenium(II) polypyridine complexes functionalized with a dibenzocyclooctyne (DIBO) or amine moiety [Ru(N^N)2 (L)](PF6 )2 are reported (L=4-(13-N-(3,4:7,8-dibenzocyclooctyne-5-oxycarbonyl) amino-4,7,10-trioxa-tridecanyl-aminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-DIBO, N^N=2,2'-bipyridine bpy (1 a), 1,10-phenanthroline phen (2 a); L=4-(13-amino-4,7,10-trioxa-tridecanylaminocarbonyl-oxy-methyl)-4'-methyl-2,2'-bipyridine bpy-NH2 , N^N=bpy (1 b), phen (2 b)). The strain-promoted alkyne-azide cycloaddition (SPAAC) reaction of the DIBO complexes 1 a and 2 a with benzyl azide were studied. Also, the DIBO complexes 1 a and 2 a can selectively label N-azidoglycans located on the surface of CHO-K1 and A549 cells that were pretreated with 1,3,4,6-tetra-O-acetyl-N-azidoacetyl-D-mannosamine (Ac4 ManNAz). Additionally, the intracellular trafficking and localization of these biomolecules were monitored using laser-scanning confocal microscopy. Interestingly, the biolabeling and cellular uptake efficiency of the DIBO complexes 1 a and 2 a were cell-line dependent, as revealed by flow cytometry and ICP-MS. Furthermore, the complexes showed good biocompatibility toward the Ac4 ManNAz-pretreated cells in the dark, but exhibited photoinduced cytotoxicity due to the generation of singlet oxygen.


Assuntos
2,2'-Dipiridil/análogos & derivados , Alcinos/química , Derivados de Benzeno/química , Membrana Celular/química , Substâncias Luminescentes/química , Compostos Organometálicos/química , Polissacarídeos/análise , 2,2'-Dipiridil/química , 2,2'-Dipiridil/toxicidade , Alcinos/toxicidade , Animais , Derivados de Benzeno/toxicidade , Células CHO , Linhagem Celular , Cricetulus , Humanos , Substâncias Luminescentes/toxicidade , Microscopia Confocal , Imagem Óptica , Compostos Organometálicos/toxicidade , Coloração e Rotulagem
9.
Inorg Chem ; 54(13): 6582-93, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26087119

RESUMO

In this Article, we present a series of cyclometalated iridium(III) polypyridine complexes of the formula [Ir(N^C)2(N^N)](PF6) that showed dual emission under ambient conditions. The structures of the cyclometalating and diimine ligands were changed systematically to investigate the effects of the substituents on the dual-emission properties of the complexes. On the basis of the photophysical data, the high-energy (HE) and low-energy (LE) emission features of the complexes were assigned to triplet intraligand ((3)IL) and triplet charge-transfer ((3)CT) excited states, respectively. Time-dependent density functional theory (TD-DFT) calculations supported these assignments and indicated that the dual emission resulted from the interruption of the communication between the higher-lying (3)IL and the lower-lying (3)CT states by a triplet amine-to-ligand charge-transfer ((3)NLCT) state. Also, the avidin-binding properties of the biotin complexes were studied by emission titrations, and the results showed that the dual-emissive complexes can be utilized as ratiometric probes for avidin. Additionally, all the complexes exhibited efficient cellular uptake by live HeLa cells. The MTT and Annexin V assays confirmed that no cell death and early apoptosis occurred during the cell imaging experiments. Interestingly, laser-scanning confocal microscopy revealed that the complexes were selectively localized on the cell membrane, mitochondria, or both, depending on the nature of the substituents of the ligands. The results of this work will contribute to the future development of dual-emissive transition metal complexes as ratiometric probes and organelle-selective bioimaging reagents.


Assuntos
Corantes Fluorescentes/química , Modelos Moleculares , Compostos Organometálicos/química , Teoria Quântica , Morte Celular , Ciclização , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Irídio/química , Microscopia Confocal , Compostos Organometálicos/farmacocinética , Piridinas/química
10.
J Am Chem Soc ; 136(7): 2818-24, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24456260

RESUMO

Separating silver (Ag(+)) from lead (Pb(2+)) is one of the many merits of the porous polymer framework reported here. The selective metal binding stems from the well-defined chelating unit of N-heterocycles, which consists of a triazine (C3N3) ring bonded to three 3,5-dimethylpyrazole moieties. Such a rigid and open triad also serves as the distinct building unit in the fully conjugated 3D polymer scaffold. Because of its strong fluorescence and porosity (e.g., BET surface area: 355 m(2)/g), and because of the various types of metal species that can be readily taken up, this versatile framework is especially fit for functionalization. For example, with AgNO3 loaded, the framework solid exhibits a brown color in response to water solutions of H2S, even at the dilution of 5.0 µM (0.17 ppm); whereas cysteine and other biologically relevant thiols do not cause notable change in color. In another example, tunable white-light emission was produced when an Ir(III) complex was doped (e.g., about 0.02% of the polymer weight) onto the framework. Mechanistically, the bound Ir(III) centers become highly emissive in the orange-red region, complementing the broad, bluish emission from the polymer host to result in the overall white-light quality: the color attributes of the emission are therefore easily tunable by the Ir(III) dopant concentration. With this exemplary study, we intend to highlight metal uptake as an effective approach to modify and enrich the properties of porous polymer frameworks and to stimulate interest in further examining metal-polymer interactions in the context of sensing, separation, catalyzes, and other applications.

11.
Small Methods ; : e2400113, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552252

RESUMO

Electroluminochromic (ELC) materials have garnered significant research interest because of their potential applications in lighting, displaying, and sensing. These materials exhibit reversible modulation of photoluminescence under low-voltage stimuli. Here five phosphorescent iridium(III) complexes are reported featuring viologen-substituted 2-phenylpyridine (Vppy) ligands acting as electroactive components. Four of the complexes are bis-cyclometalated and coordinated with either neutral bipyridine derivatives or negatively charged 2-picolinate. The remaining complex is heteroleptic tris-cyclometalated, containing one Vppy and two 2-phenylquinoline ligands. Upon photoexcitation, the bis-cyclometalated complexes exhibit orange to red phosphorescence originating from mixed triplet metal-to-ligand charge transfer (3MLCT) and intraligand (3IL) dπ(Ir)/π(Vppy) → π*(Vppy) state, whereas the tris-cyclometalated complex is non-emissive due to a low Ir(IV/III) oxidation potential favoring oxidative quenching by the viologen pendants. When the cationic viologens are electrochemically reduced to their neutral form, the bis-cyclometalated complexes show a remarkable blue-shift in their phosphorescence maxima due to increased energy levels of the Vppy molecular orbitals. In the case of the tris-cyclometalated complex, reduction of the viologen groups interrupts the quenching process, leading to a luminescence turn-on. These complexes are used to develop ELC devices, which exhibit reversible luminescence response in terms of color or on-off switching under a low voltage of 2 V.

12.
Dalton Trans ; 52(35): 12444-12453, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37594412

RESUMO

We report herein the design, synthesis and characterisation of a series of luminescent iridium(III) porphyrin complexes [Ir(ttp)(CH2CH2OH)] (H2ttp = 5,10,15,20-tetra-4-tolylporphyrin) (1), [Ir(tpp-Ph-NO2)(CO)Cl] (H2tpp-Ph-NO2 = 5-(4-((4-nitrophenoxy)carbonyloxymethyl)phenyl)-10,15,20-triphenylporphyrin) (2), [Ir(tpp-COOMe)(Py)2](Cl) (H2tpp-COOMe = 5-(4-methoxycarbonylphenyl)-10,15,20-triphenylporphyrin; Py = pyridine) (3) and [Ir(tpp-COOH)(Py)2](Cl) (H2tpp-COOH = 5-(4-carboxylphenyl)-10,15,20-triphenylporphyrin) (4). All the complexes displayed long-lived near-infrared (NIR) emission attributed to an excited state of mixed triplet intraligand (3IL) (π → π*) (porphyrin) and triplet metal-to-ligand charge transfer (3MLCT) (dπ(Ir) → π*(porphyrin)) character. The cytotoxicity of the complexes toward HeLa cells was examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cationic complexes 3 and 4 exhibited higher cytotoxic activity toward HeLa cells than their neutral counterparts 1 and 2. Cellular uptake studies by inductively coupled plasma-mass spectrometry (ICP-MS) and laser-scanning confocal microscopy (LSCM) indicated that complexes 3 and 4 showed higher cellular uptake efficiencies than complexes 1 and 2 due to their cationic charge, and they were enriched in the perinuclear region of the cells with negligible nuclear uptake. Additionally, the carboxyl complex 4 was used to label a model protein bovine serum albumin (BSA) via an amidation reaction. The resultant luminescent protein conjugate 4-BSA displayed similar photophysical properties and intracellular localisation behaviour to its parent complex. The results of this work will contribute to the development of luminescent iridium(III) porphyrin complexes and related bioconjugates as NIR-emissive probes for bioimaging applications.


Assuntos
Irídio , Dióxido de Nitrogênio , Humanos , Células HeLa , Transporte Biológico , Luminescência
13.
Chem Sci ; 14(46): 13508-13517, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033895

RESUMO

Photosensitisers for photoimmunotherapy with high spatiotemporal controllability are rare. In this work, we designed rhenium(i) polypyridine complexes modified with a tetrazine unit via a bioorthogonally activatable carbamate linker as bioorthogonally dissociative photosensitisers for the controlled induction of immunogenic cell death (ICD). The complexes displayed increased emission intensities and singlet oxygen (1O2) generation efficiencies upon reaction with trans-cyclooct-4-enol (TCO-OH) due to the separation of the quenching tetrazine unit from the rhenium(i) polypyridine core. One of the complexes containing a poly(ethylene glycol) (PEG) group exhibited negligible dark cytotoxicity but showed greatly enhanced (photo)cytotoxic activity towards TCO-OH-pretreated cells upon light irradiation. The reason is that TCO-OH allowed the synergistic release of the more cytotoxic rhenium(i) aminomethylpyridine complex and increased 1O2 generation. Importantly, the treatment induced a cascade of events, including lysosomal dysfunction, autophagy suppression and ICD. To the best of our knowledge, this is the very first example of using bioorthogonal dissociation reactions as a trigger to realise photoinduced ICD, opening up new avenues for the development of innovative photoimmunotherapeutic agents.

14.
Dalton Trans ; 51(27): 10501-10506, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766239

RESUMO

Phosphorescent iridium(III) complexes have been extensively investigated as cellular imaging reagents and sensors. The intracellular localization of the complexes is known to be closely related to their formal charge, molecular size, lipophilicity, and bioactive pendants. Herein, we reported four phosphorescent iridium(III) complexes with the diimine ligands being modified with ester or amide groups as imaging reagents for living cells. The complexes have the same positive charge and very similar molecular size and weight. The lipophilicity of the complexes is similar ranging from 1.45 to 2.14. Upon internalization into living HeLa cells, while complexes 2-4, like most other iridium(III) complexes, were localized in the cytoplasm, complex 1 unexpectedly stained the whole cells including nuclei. The nuclear uptake of complex 1 was not observed when the cells were pretreated with chlorpromazine or nocodazole, suggesting that clathrin and microtubules mediated the nuclear uptake of complex 1. Additionally, the nuclear uptake efficiency is related to the cell division cycle. The complex was mainly concentrated in the nucleus when the cells were in mitosis, and distributed in whole cells when the cells were in the interphases. Furthermore, complex 1 exhibited a longer luminescence lifetime in the nucleus than in the cytoplasm as revealed by photoluminescence lifetime imaging microscopy (PLIM). Incubation of the cells in the hypoxia environment elongated the lifetime of the cytoplasmic complex, but hardly affected the luminescence properties of the intranuclear complex.


Assuntos
Ésteres , Irídio , Amidas/farmacologia , Células HeLa , Humanos , Luminescência
15.
Dalton Trans ; 51(15): 6095-6102, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35357380

RESUMO

Fluorescent/phosphorescent dual-emissive polymers or hybrids consisting of both fluorophore and phosphor have been used as self-calibrating probes and imaging reagents for cellular molecular oxygen. Oxygen selectively quenches the phosphorescence and the fluorescence serves as an internal reference. The phosphorescence/fluorescence ratio is used as a quantitative indicator of oxygen content. In wavelength-ratiometric probes, the fluorophore and phosphor are designed to emit at different wavelengths. It is easy to achieve spectral separation, but the phosphorescence/fluorescence ratio fluctuates due to the difference in the absorption and scattering of light at different wavelengths by biological samples. Herein we reported a lifetime-ratiometric luminescent polymeric probe where the fluorophore and phosphor emitted at the same wavelength. Spectral separation was achieved based on the difference in their excited-state lifetimes via time-resolved luminescence analysis and imaging. The probe exhibited a phosphorescence lifetime of about 931 ns with a phosphorescence/fluorescence ratio of 4.49 in deaerated aqueous buffer. The lifetime was shortened to 251 ns and the ratio decreased to 1.08 in oxygen saturated solution because of phosphorescence quenching. The utilization of the probe for quantitative oxygen sensing and mapping in living HeLa cells was demonstrated using calibration curves obtained from fixed cells.


Assuntos
Luminescência , Oxigênio , Corantes Fluorescentes , Células HeLa , Humanos , Medições Luminescentes , Oxigênio/análise , Polímeros
16.
Adv Mater ; 34(5): e2107013, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34741357

RESUMO

Electrically controlling photoluminescence has attracted great research interest and offers many opportunities for technological developments. Electroluminochromic materials undergo redox reactions under low-voltage stimuli to achieve reversible luminescence switching. Till now, photoluminescence switching of a single molecule caused by electrical stimuli is restricted to intensity response because the redox-active moieties are good electron donors or acceptors and electrical stimuli can regulate the photoinduced electron-transfer and affect the luminescence intensity. In this work, the manipulation of the electroluminochromism behavior of a series of viologen-substituted iridium(III) complexes through the regulation of ligand orbital energy levels and electronic communication between the viologen pendants and the iridium(III) complex core is reported. Electrochemical redox reactions reversibly modulate either the luminescence quenching effect or the push-pull electronic effect of the viologen substituents, achieving multicolor "on-off" luminescence response toward electrical stimuli and luminescence manipulation between two emissive states with different wavelengths and lifetimes. To illustrate the promising applications of these electroluminochromic materials, recording and displaying luminescence information under electrical stimuli are demonstrated. Information encryption is realized by letting the electroluminochromism occur in the near-infrared region or in the time domain. Near-infrared camera or time-resolved luminescence analysis can be used to help read the invisible information.

17.
Chem Sci ; 12(33): 11020-11027, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34522299

RESUMO

Simultaneous analysis of luminescence signals of multiple probes can improve the accuracy and efficiency of biosensing and bioimaging. Analysis of multiple signals at different wavelengths usually suffers from spectral overlap, possible energy transfer, and difference in detection efficiency. Herein, we reported a polymeric luminescent probe, which was composed of a phenothiazine-based fluorescent compound and a phosphorescent iridium(iii) complex. Both luminophores emitted at around 600 nm but their luminescence lifetimes are 160 times different, allowing time-resolved independent analysis. As the fluorescence was enhanced in response to oxidation by hypochlorite and the phosphorescence was sensitive toward oxygen quenching, a four-dimensional relationship between luminescence intensity, fluorescence/phosphorescence ratio, hypochlorite concentration, and oxygen content was established. In cellular imaging, time-resolved photoluminescence imaging microscopy clearly showed the independent fluorescence response toward hypochlorite and phosphorescence response toward oxygen in separated time intervals. This work opens up a new idea for the development of multiplex biosensing and bioimaging.

18.
Chemistry ; 16(28): 8329-39, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20602365

RESUMO

We report the synthesis, characterization, and photophysical properties of a new class of luminescent cyclometalated iridium(III) polypyridine poly(ethylene glycol) (PEG) complexes [Ir(N--C)(2)(N--N)](PF(6)) (HN--C=Hppy (2-phenylpyridine), N--N=bpy-CONH-PEG1 (bpy=2,2'-bipyridine; 1a), bpy-CONH-PEG3 (1b); HN--C=Hpq (2-phenylquinoline), N--N=bpy-CONH-PEG1 (2a), bpy-CONH-PEG3 (2b); HN--C=Hpba (4-(2-pyridyl)benzaldehyde), N--N=bpy-CONH-PEG1 (3)) and their PEG-free counterparts (N--N=bpy-CONH-Et, HN--C=Hppy (1c); HN--C=Hpq (2c)). The cytotoxicity and cellular uptake of these complexes have been investigated by the MTT assay, ICPMS, laser-scanning confocal microscopy, and flow cytometry. The results showed that the complexes supported by the water-soluble PEG can act as biological probes and labels with considerably reduced cytotoxicity. Because the aldehyde groups of complex 3 are reactive toward primary amines, the complex has been utilized as the first luminescent PEGylation reagent. Bovine serum albumin (BSA) and poly(ethyleneimine) (PEI) have been PEGylated with this complex, and the resulting conjugates have been isolated, purified, and their photophysical properties studied. The DNA-binding and gene-delivery properties of the luminescent PEI conjugate 3-PEI have also been investigated.


Assuntos
Irídio/química , Compostos Organometálicos/síntese química , Polietilenoglicóis/química , Polímeros/química , Soroalbumina Bovina/química , Animais , Bovinos , Eletroquímica , Irídio/toxicidade , Luminescência , Estrutura Molecular , Compostos Organometálicos/química , Compostos Organometálicos/toxicidade , Polietilenoglicóis/toxicidade , Ligação Proteica , Soroalbumina Bovina/metabolismo
19.
Inorg Chem ; 49(11): 4984-95, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20465281

RESUMO

A new class of luminescent biotinylation reagents derived from cyclometalated iridium(III) and rhodium(III) bis(pyridylbenzaldehyde) biotin complexes, [Ir(pba)(2)(bpy-C6-biotin)](PF(6)) (1), [Ir(pba)(2)(bpy-TEG-biotin)](PF(6)) (2), and [Rh(pba)(2)(bpy-C6-biotin)](PF(6)) (3), together with their biotin-free counterparts [Ir(pba)(2)(bpy-Et)](PF(6)) (4) and [Rh(pba)(2)(bpy-Et)](PF(6)) (5) [Hpba = 4-(2-pyridyl)benzaldehyde, bpy-C6-biotin = 4-[(6-biotinamido)hexylaminocarbonyl]-4'-methyl-2,2'-bipyridine, bpy-TEG-biotin = 4-[(13-biotinamido-4,7,10-trioxa)tridecylaminocarbonyl]-4'-methyl-2,2'-bipyridine, bpy-Et = 4-(ethylaminocarbonyl)-4'-methyl-2,2'-bipyridine], have been synthesized and characterized and their photophysical and electrochemical properties studied. Upon photoexcitation, the iridium(III) complexes 1, 2, and 4 exhibited intense and long-lived orange-yellow luminescence in fluid solutions at 298 K and in rigid glass at 77 K. The rhodium(III) complexes 3 and 5 were weakly emissive in fluid solutions at 298 K but showed intense luminescence in low-temperature glass. In view of the structured emission profiles and the long lifetimes, the emission of all of the complexes has been assigned to a triplet intraligand ((3)IL) (pi --> pi*) (pba) excited state, which was probably mixed with some triplet metal-to-ligand charge-transfer ((3)MLCT) [dpi(Ir or Rh) --> pi*(pba)] character. To investigate the reactivity of the aldehyde groups, complex 2 was reacted with n-butylamine, resulting in the formation of the complex [Ir(ppy-CH(2)NHC(4)H(9))(2)(bpy-TEG-biotin)](PF(6)) (2a) [Hppy-CH(2)NHC(4)H(9) = 2-[4-[N-(n-butyl)aminomethyl]phenyl]pyridine]. All of the aldehyde complexes have been used to biotinylate bovine serum albumin (BSA) to form bioconjugates 1-BSA-5-BSA. The bioconjugates have been isolated, purified, and characterized and their photophysical properties studied. Upon photoexcitation, all of the bioconjugates were luminescent and the emission has been attributed to a (3)MLCT [dpi(Ir) --> pi*(N(wedge)N)] state for the iridium(III) conjugates and a mixed (3)IL (pi --> pi*) (N(wedge)N and N(wedge)C)/(3)MLCT [dpi(Rh) --> pi*(N(wedge)N)] state for the rhodium(III) conjugates. The avidin-binding properties of complexes 1, 2, 2a, and 3 and bioconjugates 1-BSA-3-BSA have been investigated using the 4'-hydroxyazobenzene-2-carboxylic acid assay. Emission titrations showed that complex 2a displayed a significant change of the emission profile upon binding to avidin. Additionally, the cytotoxicity of all of the iridium(III) and rhodium(III) complexes toward the human cervix epithelioid carcinoma cells has been examined by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay. Furthermore, the cellular uptake properties of the complexes and bioconjugate 2-BSA have been investigated by laser-scanning confocal microscopy.


Assuntos
Benzaldeídos/química , Irídio/química , Luminescência , Compostos Organometálicos/síntese química , Ródio/química , Biotinilação , Medições Luminescentes , Estrutura Molecular , Compostos Organometálicos/química
20.
Inorg Chem ; 49(12): 5432-43, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20491455

RESUMO

Luminescent dendritic cyclometalated iridium(III) polypyridine complexes [{Ir(N--C)(2)}(n)(bpy-n)](PF(6))(n) (HN--C = 2-phenylpyridine, Hppy, n = 8 (ppy-8), 4 (ppy-4), 3 (ppy-3); HN--C = 2-phenylquinoline, Hpq, n = 8 (pq-8), 4 (pq-4), 3 (pq-3)) have been designed and synthesized. The properties of these dendrimers have been compared to those of their monomeric counterparts [Ir(N--C)(2)(bpy-1)](PF(6)) (HN--C = Hppy (ppy-1), Hpq (pq-1)). Cyclic voltammetric studies revealed that the iridium(IV/III) oxidation and bpy-based reduction occurred at about +1.24 to +1.29 V and -1.21 to -1.27 V versus SCE, respectively, for all the complexes. The molar absorptivity of the dendritic iridium(III) complexes is approximately proportional to the number of [Ir(N--C)(2)(N--N)] moieties in one complex molecule. However, the emission lifetimes and quantum yields are relatively independent of the number of [Ir(N--C)(2)(N--N)] units, suggesting negligible electronic communications between these units. Upon photoexcitation, the complexes displayed triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ir) --> pi*(bpy-n)) emission. The interaction of these complexes with plasmid DNA has been investigated by agarose gel retardation assays. The results showed that the dendritic iridium(III) complexes, unlike their monomeric counterparts, bound to the plasmid, and the interaction was electrostatic in nature. The lipophilicity of all the complexes has been determined by reversed-phase high-performance liquid chromatography (HPLC). Additionally, the cellular uptake of the complexes by the human cervix epithelioid carcinoma (HeLa) cell line has been examined by inductively coupled plasma mass spectrometry (ICP-MS), laser-scanning confocal microscopy, and flow cytometry. Upon internalization, all the complexes were localized in the perinuclear region, forming very sharp luminescent rings surrounding the nuclei. Interestingly, in addition to these rings, HeLa cells treated with the dendritic iridium(III) complexes showed specific labeled compartments, which have been identified to be the Golgi apparatus. Furthermore, the cytotoxicity of these iridium(III) complexes has been evaluated by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) assay.


Assuntos
Dendritos/química , Irídio/química , Luminescência , Compostos Organometálicos/farmacologia , Piridinas/química , Proliferação de Células/efeitos dos fármacos , DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Complexo de Golgi/química , Células HeLa , Humanos , Organelas/efeitos dos fármacos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Plasmídeos/efeitos dos fármacos , Polímeros/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa