Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(28): e2207672, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36942691

RESUMO

Exosomal microRNAs have been studied as a good source of noninvasive biomarkers due to their functions in genetic exchange between cells and have been already well documented in many biological activities; however, inaccuracy remains a key challenge for liver cancer surveillance. Herein, a versatile duplex photothermal digital polymerase chain reaction (PCR) strategy combined with a lipid nanoparticle-based exosome capture approach is proposed to profile microRNAs expression through a 3-h easy-to-operate process. The microfluidically-generated molybdenum disulfide-nanocomposite-doped gelatin microcarriers display attractive properties as a 2-4 °C s-1 ramping-up rate triggered by near-infrared and reversible sol-gel transforming in step with PCR activation. To achieve PCR thermocycling, the corresponding irradiation coordinating with fan cooling are automatically performed via a homemade control module with programs. Thus, taking the multiplexing capability of dual-color labeling, 19-31 folds higher in exosomal microRNA-200b-3p and microRNA-21-5p, and tenfold lower in microRNA-22-3p expressions relative to the control microRNA-26a-5p are quantified in two liver cancer cells (Huh7 and HepG2) than in those from the healthy cells. It is believed that this exosomal microRNA genotyping method would be highly applicable for liver cancer diagnostics.


Assuntos
Exossomos , Neoplasias Hepáticas , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Exossomos/metabolismo , Reação em Cadeia da Polimerase , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
2.
Int J Mol Sci ; 24(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37108482

RESUMO

Tissue injury, one of the most common traumatic injuries in daily life, easily leads to secondary wound infections. To promote wound healing and reduce scarring, various kinds of wound dressings, such as gauze, bandages, sponges, patches, and microspheres, have been developed for wound healing. Among them, microsphere-based tissue dressings have attracted increasing attention due to the advantage of easy to fabricate, excellent physicochemical performance and superior drug release ability. In this review, we first introduced the common methods for microspheres preparation, such as emulsification-solvent method, electrospray method, microfluidic technology as well as phase separation methods. Next, we summarized the common biomaterials for the fabrication of the microspheres including natural polymers and synthetic polymers. Then, we presented the application of the various microspheres from different processing methods in wound healing and other applications. Finally, we analyzed the limitations and discussed the future development direction of microspheres in the future.


Assuntos
Cicatriz , Cicatrização , Humanos , Microesferas , Polímeros , Materiais Biocompatíveis
3.
Small ; 18(16): e2107858, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35212452

RESUMO

Digital PCR (dPCR) surpasses the performance of earlier PCR formats because of highly precise, absolute quantification and other unique merits. A simple thermocycling approach and durable microcarrier are of great value for dPCR advancement and application. Herein, a near-infrared (NIR) controlled thermocycling approach by embedding magnetic graphene oxide (GO) composite into the agarose microcarriers is developed. The core-shell composite is constructed by sequentially encapsulating GO and silica outside the magnetic nanocores. Benefiting from these additives, the resultant composite agarose gains appealing features as light-driven temperature changing, switchable gel-sol phase transforming, biocompatibility, and magnetic traction. By further emulsifying into droplets via the microfluidics method, the influence of typical parameters including material loading amount, laser intensity, and droplet diameter at various ranges is investigated for assembling microcarriers with different responsiveness. Then a paradigm of the NIR program can be easily tailored for PCR thermocycling. Finally, the feasibility of the approach is verified by detecting statistically diluted Klebsiella pneumoniae DNA samples, from 0.1 to 2 copies per drop. It is anticipated that this method has promising prospects for dPCR-based and other temperature-controlled applications.


Assuntos
DNA , Microfluídica , Reação em Cadeia da Polimerase/métodos , Sefarose
4.
Chemistry ; 25(52): 12052-12057, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31269307

RESUMO

The performance and safety of lithium (Li) metal batteries can be compromised owing to the formation of Li dendrites. Here, the use of a polymer of intrinsic microporosity (PIM) is reported as a feasible and robust interfacial layer that inhibits dendrite growth. The PIM demonstrates excellent film-forming ability, electrochemical stability, strong adhesion to a copper metal electrode, and outstanding mechanical flexibility so that it relieves the stress of structural changes produced by reversible lithiation. Importantly, the porous structure of the PIM, which guides Li flux to obtain uniform deposition, and its strong mechanical strength combine to suppress dendrite growth. Hence, the electrochemical performance of the anode is significantly enhanced, promising excellent performance and extended cycle lifetime for Li metal batteries.

5.
Research (Wash D C) ; 7: 0345, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711476

RESUMO

Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.

6.
Biosensors (Basel) ; 14(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667157

RESUMO

The early detection of procalcitonin (PCT) is crucial for diagnosing bacterial infections due to its high sensitivity and specificity. While colloidal gold colorimetric and immune-chemiluminescence methods are commonly employed in clinical detection, the former lacks sensitivity, and the latter faces challenges with a brief luminescence process and an elevated background. Here, we introduce a novel approach for the quantitative analysis of PCT using surface-enhanced Raman spectroscopy (SERS), leveraging the enhanced properties of metal nanoparticles. Simultaneously, we employed a magnetic nanoparticle coating and surface biofunctionalization modification to immobilize PCT-trapping antibodies, creating the required immune substrates. The resulting magnetic nanoparticles and antibody complexes, acting as carriers and recognition units, exhibited superparamagnetism and the specific recognition of biomarkers. Then, this complex efficiently underwent magnetic separation with an applied magnetic field, streamlining the cumbersome steps of traditional ELISA and significantly reducing the detection time. In conclusion, the exploration of immunomagnetic bead detection technology based on surface-enhanced Raman spectroscopy holds crucial practical significance for the sensitive detection of PCT.


Assuntos
Separação Imunomagnética , Pró-Calcitonina , Análise Espectral Raman , Humanos , Separação Imunomagnética/métodos , Nanopartículas Metálicas/química , Técnicas Biossensoriais
7.
Adv Sci (Weinh) ; 11(13): e2306088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38243642

RESUMO

The unprecedented demand for variants diagnosis in response to the COVID-19 epidemic has brought the spotlight onto rapid and accurate detection assays for single nucleotide polymorphisms (SNPs) at multiple locations. However, it is still challenging to ensure simplicity, affordability, and compatibility with multiplexing. Here, a novel technique is presented that combines peptide nucleic acid (PNA) clamps and near-infrared (NIR)-driven digital polymerase chain reaction (dPCR) to identify the Omicron and Delta variants. This is achieved by simultaneously identifying highly conserved mutated signatures at codons 19, 614, and 655 of the spike protein gene. By microfluidically introducing graphene-oxide-nanocomposite into the assembled gelatin microcarriers, they achieved a rapid temperature ramping-up rate and switchable gel-to-sol phase transformation synchronized with PCR activation under NIR irradiation. Two sets of duplex PCR reactions, each classifying respective PNA probes, are emulsified in parallel and illuminated together using a homemade vacuum-based droplet generation device and a programmable NIR control module. This allowed for selective amplification of mutant sequences due to single-base-pair mismatch with PNA blockers. Sequence-recognized bioreactions and fluorescent-color scoring enabled quick identification of variants. This technique achieved a detection limit of 5,100 copies and a 5-fold quantitative resolution, which is promising to unfold minor differences and dynamic changes.


Assuntos
COVID-19 , Ácidos Nucleicos Peptídicos , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Ácidos Nucleicos Peptídicos/genética , Corantes , Teste para COVID-19
8.
Biosens Bioelectron ; 228: 115213, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36906989

RESUMO

Droplet microfluidic technology has revolutionized biomolecular analytical research, as it has the capability to reserve the genotype-to-phenotype linkage and assist for revealing the heterogeneity. Massive and uniform picolitre droplets feature dividing solution to the level that single cell and single molecule in each droplet can be visualized, barcoded, and analyzed. Then, the droplet assays can unfold intensive genomic data, offer high sensitivity, and screen and sort from a large number of combinations or phenotypes. Based on these unique advantages, this review focuses on up-to-date research concerning diverse screening applications utilizing droplet microfluidic technology. The emerging progress of droplet microfluidic technology is first introduced, including efficient and scaling-up in droplets encapsulation, and prevalent batch operations. Then the new implementations of droplet-based digital detection assays and single-cell muti-omics sequencing are briefly examined, along with related applications such as drug susceptibility testing, multiplexing for cancer subtype identification, interactions of virus-to-host, and multimodal and spatiotemporal analysis. Meanwhile, we specialize in droplet-based large-scale combinational screening regarding desired phenotypes, with an emphasis on sorting for immune cells, antibodies, enzymatic properties, and proteins produced by directed evolution methods. Finally, some challenges, deployment and future perspective of droplet microfluidics technology in practice are also discussed.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Mycobacterium tuberculosis , Microfluídica/métodos , Testes de Sensibilidade Microbiana , Proteínas , Técnicas Analíticas Microfluídicas/métodos , Ensaios de Triagem em Larga Escala/métodos
9.
Adv Sci (Weinh) ; 10(25): e2300195, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356052

RESUMO

Translational medicine aims to improve human health by exploring potential treatment methods developed during basic scientific research and applying them to the treatment of patients in clinical settings. The advanced perceptions of gene functions have remarkably revolutionized clinical treatment strategies for target agents. However, the progress in gene editing therapy has been hindered due to the severe off-target effects and limited editing sites. Fortunately, the development in the clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) system has renewed hope for gene therapy field. The CRISPR-Cas9 system can fulfill various simple or complex purposes, including gene knockout, knock-in, activation, interference, base editing, and sequence detection. Accordingly, the CRISPR-Cas9 system is adaptable to translational medicine, which calls for the alteration of genomic sequences. This review aims to present the latest CRISPR-Cas9 technology achievements and prospect to translational medicine advances. The principle and characterization of the CRISPR-Cas9 system are firstly introduced. The authors then focus on recent pre-clinical and clinical research directions, including the construction of disease models, disease-related gene screening and regulation, and disease treatment and diagnosis for multiple refractory diseases. Finally, some clinical challenges including off-target effects, in vivo vectors, and ethical problems, and future perspective are also discussed.


Assuntos
Sistemas CRISPR-Cas , Ciência Translacional Biomédica , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Genômica
10.
Chemosphere ; 312(Pt 1): 137285, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36403810

RESUMO

Nowadays, the treatment of residual refractory organic contaminants (ROCs) is a huge challenge for environmental remediation. In this study, a potential process is provided by copper ferrite catalyst (CuFe2O4) activated peroxymonosulfate (PMS, HSO5-) in the bicarbonate (HCO3-) enhanced system for efficient removal of Acid Orange 7 (AO7), 2,4-dichlorophenol, phenol and methyl orange (MO) in water. The impact of key reaction parameters, water quality components, main reactive oxygen species (ROS), probable degradation mechanism, rational degradation pathways and catalyst stability were systematically investigated. A 95.0% AO7 (C0 = 100 mg L-1) removal was achieved at initial pH (pH0) of 5.9 ± 0.1 (natural pH), CuFe2O4 dosage of 0.15 g L-1, PMS concentration of 0.98 mM, HCO3- concentration of 2 mM, and reaction time of 30 min. Both sulfate radical (SO4-•) and hydroxyl radical (•OH) on the surface of catalyst were proved as the predominant radical species through radical quenching experiments and electron paramagnetic resonance (EPR) analysis. The buffer nature of HCO3- was partially contributed for the enhanced degradation of AO7 under CuFe2O4/PMS/HCO3- system. Importantly, according to 13C nuclear magnetic resonance (NMR) and EPR analysis, the positive effect of bicarbonate may be mainly attributed to the formation of peroxymonocarbonate (HCO4-), which may enhance the generation of •OH. The magnetic CuFe2O4 particles can be well recycled and the leaching concentration of Cu was acceptable (<1 mg L-1). Considering the widespread presence of bicarbonate in water environment, this work may provide a safe, efficient, and sustainable technique for the elimination of ROCs from practical complex wastewater.


Assuntos
Cobre , Nanopartículas , Cobre/química , Bicarbonatos , Peróxidos/química
11.
Biosens Bioelectron ; 211: 114344, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35598553

RESUMO

Digital PCR (dPCR) is built on partitioning reagent to the extent that single template molecules are amplified and visualized individually, whereby offers higher precision and other better indicators than the former PCR techniques. Accordingly, dPCR is particular suited for precision medicine applications that require accurate molecular characterization with high sensitivity. This review aims to summarize different applications of dPCR in precision medicine. The state-of-the-art progress of dPCR technique is first introduced, including novel prototype machines and dPCR-integrated biochips. Then the clinical applications based on dPCR technique are briefly described, for instance, detecting biomarkers from tissues and various biopsies components including cell free DNA, circulating tumor cells, extracellular vesicles, and proteins. These emerging dPCR applications have been accepted as auxiliary diagnostic methods in various areas like oncology, infectious disease, and the like. Meanwhile, a usage overview is provided, focusing on successful clinical pilot studies that dPCR is utilized to improve the performances of rare event detection, fine resolution of gene expression analysis, and multiplexing. Finally, some implications and challenges in future research concerning dPCR technique are also discussed.


Assuntos
Técnicas Biossensoriais , Medicina de Precisão , Reação em Cadeia da Polimerase/métodos , Tecnologia
12.
Chem Commun (Camb) ; 56(4): 647-650, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31840153

RESUMO

Here, we demonstrate use of a Mg2+-dependent, site-specific DNA enzyme (DNAzyme) to cleave oligos from polyacrylamide gel beads, which is suitable for use in drop-based assays. We show that cleavage efficiency is improved by use of a tandem-repeat cleavage site. We further demonstrate that DNAzyme-released oligos function as primers in reverse transcription of cell-released mRNA.


Assuntos
DNA Catalítico/metabolismo , Ácidos Nucleicos/metabolismo , Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Géis/química , Géis/metabolismo , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/metabolismo , Magnésio/química , Magnésio/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa