Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38267258

RESUMO

Phosphoinositides, including phosphatidylinositol-4,5-bisphosphate (PIP2), play a crucial role in controlling key cellular functions such as membrane and vesicle trafficking, ion channel, and transporter activity. Phosphatidylinositol 4-kinases (PI4K) are essential enzymes in regulating the turnover of phosphoinositides. However, the functional role of PI4Ks and mediated phosphoinositide metabolism in the central nervous system has not been fully revealed. In this study, we demonstrated that PI4KIIIß, one of the four members of PI4Ks, is an important regulator of VTA dopaminergic neuronal activity and related depression-like behavior of mice by controlling phosphoinositide turnover. Our findings provide new insights into possible mechanisms and potential drug targets for neuropsychiatric diseases, including depression. Both sexes were studied in basic behavior tests, but only male mice could be used in the social defeat depression model.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Feminino , Camundongos , Masculino , Animais , Neurônios Dopaminérgicos/fisiologia , Área Tegmentar Ventral/fisiologia , Depressão , Fosfatidilinositóis/metabolismo , Sistema Nervoso Central
2.
Hum Mol Genet ; 31(13): 2109-2120, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35038734

RESUMO

Noise-induced hearing loss (NIHL) is a multifactorial disease caused by environmental, genetic and epigenetic variables. SUMOylation is a post-translational modification that regulates biological processes. The objective of this study was to determine the link between genetic variation in the chromobox 4 (CBX4) and the risk of NIHL. This study applied a case-control design with 588 cases and 582 controls, and the sample was predominantly male (93.76%). The T allele of CBX4 rs1285250 was found to be significantly linked with NIHL (P = 0.002) and showed strong associations in both the codominant and recessive models (TT versus CC, P = 0.005; TT/TC versus CC, P = 0.009). By constructing a mouse model of hearing loss because of noise exposure, changes in hearing thresholds were observed in noise-exposed mice, along with a decrease in the number of cochlear hair cells. Furthermore, noise promotes cochlear hair cell apoptosis by inducing SP1/CBX4 pathway activation. Further functional studies demonstrated that SP1 has an influence on the promoter activity of the CBX4 rs1285250 intron, with the promoter activity of the T allele being higher than that of the C allele. Knockdown of transcription factor SP1 reduced the expression of CBX4 expression and simultaneously reduced apoptosis in HEI-OC1 cells. Together, our findings have shown that CBX4 genetic polymorphism rs1285250 T-allele was associated with increased risk of NIHL and might be used as biomarkers for male workers exposed to noise. Furthermore, we speculate that the CBX4 of rs1285250 T-allele leads to a stronger potential enhancer activity from a predicted gain of stronger SP1 binding.


Assuntos
Perda Auditiva Provocada por Ruído , Ligases/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Animais , Estudos de Casos e Controles , China , Feminino , Predisposição Genética para Doença , Genótipo , Perda Auditiva Provocada por Ruído/genética , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único/genética , Proteína SUMO-1/genética , Ubiquitina-Proteína Ligases/genética
3.
Am J Transplant ; 23(12): 1832-1844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37532180

RESUMO

Hepatocyte transplantation has the potential to treat acute liver failure and correct liver-based metabolic disorders. Proliferating human hepatocytes (ProliHHs) provide a large-scale source as an alternative to primary human hepatocytes. However, host rejection led to inefficient graft survival and function, which hindered the clinical application of cell therapy. Herein, we employed the lentiviral system to overexpress immunomodulatory factors programmed death-ligand 1 (cluster of differentiation 274) (CD274) and cluster of differentiation 47 (CD47) in ProliHHs. CD47+274 overexpression inhibited macrophage and T cell responses in vitro. After transplantation into mice via the spleen without immunosuppression, CD47+274 ProliHHs accumulation in the liver significantly increased for 48 hours compared with ProliHHs. Consistent with the in vitro results, CD47+274 ProliHHs were less aggregated and infiltrated by macrophages and also recruited fewer T cells in the liver. Seven days after transplantation, the human albumin level of engineered ProliHHs doubled compared with control group. CD47+274 ProliHHs further ameliorated the liver injury induced using concanavalin A. Overall, our results suggested CD47+274 overexpression reduced innate and adaptive immune responses during hepatocyte transplantation, and the survival rate and graft function of transplanted hepatocyte-like cells were all significantly improved.


Assuntos
Antígeno CD47 , Hepatopatias , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Hepatócitos , Imunidade , Hepatopatias/metabolismo
4.
Hepatology ; 76(6): 1690-1705, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35229337

RESUMO

BACKGROUND AND AIMS: Hepatocyte transplantation has been demonstrated to be effective to treat liver metabolic disease and acute liver failure. Nevertheless, the shortage of donor hepatocytes restrained its application in clinics. To expand human hepatocytes at a large scale, several dedifferentiation-based protocols have been established, including proliferating human hepatocytes (ProliHH). However, the decreased transplantation efficiency of these cells after long-term expansion largely impedes their application. APPROACH AND RESULTS: We found that accompanied with dedifferentiation, long-term cultured ProliHH (lc-ProliHH) up-regulated a panel of chemokines and cytokines related to innate immunity, which were referred to as dedifferentiation-associated inflammatory factors (DAIF). DAIF elicited excessive macrophage responses, accounting for the elimination of lc-ProliHH specifically during engraftment. Two possible strategies to increase ProliHH transplantation were then characterized. Blockage of innate immune response by dexamethasone reverted the engraftment and repopulation of lc-ProliHH to a level comparable to primary hepatocytes, resulting in improved liver function and a better survival of fumarylacetoacetate hydrolase-deficient mice. Alternatively, rematuration of lc-ProliHH as organoids reduced the expression of DAIF and led to markedly improved engraftment. CONCLUSIONS: These results revealed that lc-ProliHH triggers exacerbated macrophage activation by DAIF and provided potential solutions for clinical transplantation of lc-ProliHH.


Assuntos
Hepatócitos , Fígado , Humanos , Camundongos , Animais , Hepatócitos/metabolismo , Fígado/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo , Macrófagos/metabolismo
5.
Metab Brain Dis ; 37(4): 989-1001, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35080687

RESUMO

Alzheimer's disease (AD) is a most common neurodegenerative disease. Sodium Tanshinone IIA Sulfonate (STS) has been reported to ameliorate AD pathology. However, the underlying mechanism is still unclear. In this study, AD transgenic mouse model (APP/PS1) was used to explore the potential mechanism of STS against AD. Morris water maze and Y-maze tests showed that administration of STS improved learning and memory abilities of APP/PS1 mice. STS reduced the levels of reactive oxygen species and malondialdehyde, while improved the activity of superoxide dismutase in both hippocampus and cortex in APP/PS1 mice. STS inhibited the activity of acetylcholinesterase, while improved the activity of choline acetyltransferase in APP/PS1 mice. In addition, STS elevated the protein expressions of neurotrophic factors and synapse-related proteins in both the hippocampus and cortex in APP/PS1 mice. At last, STS improved the protein expressions of glucose transporter 1 (GLUT1) and low-density lipoprotein receptor-related protein 1 (LRP1). These results indicated that the potential mechanism of STS on AD might be related to Aß transportation function via GLUT1/LRP1 pathway. HIGHLIGHTS: STS improves cognitive impairment of APP/PS1 mice. STS ameliorates the oxidative stress damage and improves the cholinergic system. STS protects against neuronal dysfunction and enhances the synaptic plasticity. STS mediates the Aß transportation of BMECs.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Animais , Disfunção Cognitiva/tratamento farmacológico , Modelos Animais de Doenças , Transportador de Glucose Tipo 1 , Camundongos , Camundongos Transgênicos , Fenantrenos
6.
Xenotransplantation ; 28(4): e12702, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34145650

RESUMO

BACKGROUND: The human-to-rat hematopoietic stem cell transplantation (HSCT) model is rare, unlike its human-to-mouse counterpart. The rat models are desired, especially in areas of physiology, toxicology, and pharmacology. In addition to lymphocytes, macrophages are also considered to be important for xenotransplantation. We generated a rat xenotransplantation model to prove the role of macrophages as a xenotransplantation barrier. METHODS: Immunodeficiency in SRG rats, which are Sprague-Dawley (SD) rats lacking Rag2 and Il2rg, was confirmed by flow cytometry and spleen immunostaining. Human umbilical cord blood was collected after scheduled cesarean section at the University of Tsukuba Hospital. Cord blood mononuclear cells (CB-MNCs) were transplanted into the SRG rats administered several injections of clodronate liposome (CL), which cause macrophage depletion. Survival of human cells was observed by flow cytometry. Rat macrophage phagocytosis assay was performed to check the species-specific effects of rat macrophages on injected human/rat blood cells. RESULTS: SRG rats were deficient in T/B/NK cells. Without CL pretreatment, human CB-MNCs were removed from SRG rats within 7 hours after transplantation. The rats pretreated with CL could survive after transplantation. Prolonged survival for more than 4 weeks was observed only following a one-time CL injection. Rat macrophages had a species-specific potential for the phagocytosis of human blood cells in vivo. CONCLUSION: In human-to-rat HSCT, the short period of early macrophage control, leading to macrophage immunotolerance, is important for engraftment. The generated model can be useful for the creation of future xenotransplantation models or other clinical research.


Assuntos
Cesárea , Células-Tronco Hematopoéticas , Animais , Feminino , Humanos , Macrófagos , Camundongos , Camundongos SCID , Gravidez , Ratos , Ratos Sprague-Dawley , Transplante Heterólogo
7.
J Biol Chem ; 293(18): 6883-6892, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507093

RESUMO

Hereditary tyrosinemia type I (HTI) is a metabolic genetic disorder caused by mutation of fumarylacetoacetate hydrolase (FAH). Because of the accumulation of toxic metabolites, HTI causes severe liver cirrhosis, liver failure, and even hepatocellular carcinoma. HTI is an ideal model for gene therapy, and several strategies have been shown to ameliorate HTI symptoms in animal models. Although CRISPR/Cas9-mediated genome editing is able to correct the Fah mutation in mouse models, WT Cas9 induces numerous undesired mutations that have raised safety concerns for clinical applications. To develop a new method for gene correction with high fidelity, we generated a Fah mutant rat model to investigate whether Cas9 nickase (Cas9n)-mediated genome editing can efficiently correct the Fah First, we confirmed that Cas9n rarely induces indels in both on-target and off-target sites in cell lines. Using WT Cas9 as a positive control, we delivered Cas9n and the repair donor template/single guide (sg)RNA through adenoviral vectors into HTI rats. Analyses of the initial genome editing efficiency indicated that only WT Cas9 but not Cas9n causes indels at the on-target site in the liver tissue. After receiving either Cas9n or WT Cas9-mediated gene correction therapy, HTI rats gained weight steadily and survived. Fah-expressing hepatocytes occupied over 95% of the liver tissue 9 months after the treatment. Moreover, CRISPR/Cas9-mediated gene therapy prevented the progression of liver cirrhosis, a phenotype that could not be recapitulated in the HTI mouse model. These results strongly suggest that Cas9n-mediated genome editing is a valuable and safe gene therapy strategy for this genetic disease.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Desoxirribonuclease I/metabolismo , Edição de Genes , Terapia Genética/métodos , Tirosinemias/genética , Adenoviridae/genética , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Células HEK293 , Hepatócitos/citologia , Humanos , Hidrolases/genética , Mutação INDEL , Cirrose Hepática/etiologia , Cirrose Hepática/prevenção & controle , Masculino , Ratos , Tirosinemias/complicações , Tirosinemias/imunologia , Tirosinemias/terapia
8.
Nature ; 547(7662): 171-172, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28703183
10.
Medicine (Baltimore) ; 103(15): e37411, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608087

RESUMO

BACKGROUND: Colonoscopy is a commonly performed gastroenterological procedure in patients associated with anxiety and pain. Various approaches have been used to provide sedation and analgesia during colonoscopy, including patient-controlled analgesia and sedation (PCAS). This study aims to evaluate the feasibility and efficiency of PCAS administered with propofol and remifentanil for colonoscopy. METHODS: This randomized controlled trial was performed in an authorized and approved endoscopy center. A total of 80 outpatients were recruited for the colonoscopy studies. Patients were randomly allocated into PCAS and total intravenous anesthesia (TIVA) groups. In the PCAS group, the dose of 0.1 ml/kg/min of the mixture was injected after an initial bolus of 3 ml mixture (1 ml containing 3 mg of propofol and 10 µg of remifentanil). Each 1 ml of bolus was delivered with a lockout time of 1 min. In the TIVA group, patients were administered fentanyl 1 µg/kg, midazolam 0.02 mg/kg, and propofol (dosage titrated). Cardiorespiratory parameters and auditory evoked response index were continuously monitored during the procedure. The recovery from anesthesia was assessed using the Aldrete scale and the Observer's Assessment of Alertness/Sedation Scale. The Visual Analogue Scale was used to assess the satisfaction of patients and endoscopists. RESULTS: No statistical differences were observed in the Visual Analogue Scale scores of the patients (9.58 vs 9.50) and the endoscopist (9.43 vs 9.30). A significant decline in the mean arterial blood pressure, heart rate, and auditory evoked response index parameters was recorded in the TIVA group (P < 0.05). The recovery time was significantly shorter in the PCAS group than in the TIVA group (P = 0.00). CONCLUSION: The combination of remifentanil and propofol could provide sufficient analgesia, better hemodynamic stability, lighter sedation, and faster recovery in the PCAS group of patients compared with the TIVA group.


Assuntos
Agnosia , Propofol , Humanos , Remifentanil , Midazolam , Analgesia Controlada pelo Paciente , Fentanila , Anestesia Intravenosa , Anestesia Geral , Colonoscopia , Dor
11.
Artigo em Inglês | MEDLINE | ID: mdl-39029648

RESUMO

Methamphetamine abuse has been associated with central nervous system damage, contributing to the development of neuropsychiatric disorders such as depressive-like behavior and cognitive impairment. With the escalating prevalence of METH abuse, there is a pressing need to explore effective therapeutic interventions. Thus, the objective of this research was to investigate whether betaine can protect against depressive-like behavior and cognitive impairment induced by METH. Following intraperitoneal injections of METH in mice, varying doses of betaine were administered. Subsequently, the behavioral responses of mice and the impact of betaine intervention on METH-induced neural damage, synaptic plasticity, microglial activation, and NLRP3 inflammatory pathway activation were assessed. Administration 30 mg/kg and 100 mg/kg of betaine ameliorated METH-induced depressive-like behaviors in the open field test, tail suspension test, forced swimming test, and sucrose preference test and cognitive impairment in the novel object recognition test and Barnes maze test. Moreover, betaine exerted protective effects against METH-induced neural damage and reversed the reduced synaptic plasticity, including the decline in dendritic spine density, as well as alterations in the expression of hippocampal PSD95 and Synapsin-1. Additionally, betaine treatment suppressed hippocampal microglial activation induced by METH. Likewise, it also inhibited the activation of the hippocampal NLRP3 inflammasome pathway and reduced IL-1ß and TNF-α release. These results collectively suggest that betaine's significant role in mitigating depressive-like behavior and cognitive impairment resulting from METH abuse, presenting potential applications in the prevention and treatment of substance addiction.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38365104

RESUMO

Methamphetamine (METH) abuse is associated with a spectrum of behavioral consequences, among which heightened aggression presents a significant challenge. However, the causal role of METH's impact in aggression and its target circuit mechanisms remains largely unknown. We established an acute METH exposure-aggression mouse model to investigate the role of ventral tegmental area (VTA) dopaminergic neurons and ventral medial hypothalamus VMH glutamatergic neuron. Our findings revealed that METH-induced VTA dopamine excitability activates the ventromedial hypothalamus (VMH) glutamatergic neurons, contributing to pathological aggression. Notably, we uncovered a dopaminergic transmission within the VTA-VMH circuit that exclusively functioned under METH influence. This dopaminergic pathway emerged as a potential key player in enabling dopamine-related pathological aggression, with heightened dopaminergic excitability implicated in various psychiatric symptoms. Also, the modulatory function of this pathway opens new possibilities for targeted therapeutic strategies for intervention to improve treatment in METH abuse and may have broader implications for addressing pathological aggression syndromes.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Agressão , Dopamina/metabolismo , Área Tegmentar Ventral/metabolismo , Neurônios Dopaminérgicos/metabolismo , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Hipotálamo Médio/metabolismo
13.
Cell Stem Cell ; 31(4): 484-498.e5, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38458193

RESUMO

Alginate-encapsulated hepatocyte transplantation is a promising strategy to treat liver failure. However, its clinical application was impeded by the lack of primary human hepatocytes and difficulty in controlling their quality. We previously reported proliferating human hepatocytes (ProliHHs). Here, quality-controlled ProliHHs were produced in mass and engineered as liver organoids to improve their maturity. Encapsulated ProliHHs liver organoids (eLO) were intraperitoneally transplanted to treat liver failure animals. Notably, eLO treatment increased the survival of mice with post-hepatectomy liver failure (PHLF) and ameliorated hyperammonemia and hypoglycemia by providing liver functions. Additionally, eLO treatment protected the gut from PHLF-augmented permeability and normalized the increased serum endotoxin and inflammatory response, which facilitated liver regeneration. The therapeutic effect of eLO was additionally proved in acetaminophen-induced liver failure. Furthermore, we performed assessments of toxicity and biodistribution, demonstrating that eLO had no adverse effects on animals and remained non-tumorigenic.


Assuntos
Falência Hepática Aguda , Falência Hepática , Humanos , Camundongos , Animais , Falência Hepática Aguda/terapia , Falência Hepática Aguda/induzido quimicamente , Distribuição Tecidual , Células Cultivadas , Hepatócitos , Fígado , Falência Hepática/terapia , Falência Hepática/metabolismo , Organoides/metabolismo
14.
J Cell Biochem ; 114(2): 256-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22948752

RESUMO

One of the essential features of stem cells is their cellular plasticity to differentiate into daughter cells with defined functions. Recently, induction of pluripotent stem cells from somatic cells by defined transcription factors led to the focus on cellular plasticity of terminally differentiated cells. This approach is adopted by other studies to demonstrate the cell fate conversion between different lineages of terminally differentiated cells. We and others showed that induced hepatocyte-like (iHep) cells are directly converted from mouse fibroblasts by overexpression of liver-enriched transcription factors. iHep cells as well as pluripotent stem cell- or mesenchymal stem cell-derived hepatocyte-like cells provide potential cell sources for disease modeling, transplantation, and tissue engineering independent of donor organs. Here, we review the latest advances in generating hepatocyte-like cells and summarize general criteria for evaluating these cells. In addition, we propose a possible role of the p19(Arf) /p53 pathway in cell fate maintenance, which apparently limits the formation of induced pluripotent stem (iPS) cells and iHep cells.


Assuntos
Diferenciação Celular/genética , Fibroblastos , Hepatócitos , Células-Tronco Pluripotentes Induzidas , Animais , Linhagem da Célula , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Transdução de Sinais , Fatores de Transcrição/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
15.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695736

RESUMO

Numerous studies have shown that hepatocyte transplantation is a promising approach for liver diseases, such as liver-based metabolic diseases and acute liver failure. However, it lacks strong evidence to support the long-term therapeutic effects of hepatocyte transplantation in clinical practice. Currently, major hurdles include availability of quality-assured hepatocytes, efficient engraftment and repopulation, and effective immunosuppressive regimens. Notably, cell sources have been advanced recently by expanding primary human hepatocytes by means of dedifferentiation in vitro. Moreover, the transplantation efficiency was remarkably improved by the established preparative hepatic irradiation in combination with hepatic mitogenic stimuli regimens. Finally, immunosuppression drugs, including glucocorticoid and inhibitors for co-stimulating signals of T cell activation, were proposed to prevent innate and adaptive immune rejection of allografted hepatocytes. Despite remarkable progress, further studies are required to improve in vitro cell expansion technology, develop clinically feasible preconditioning regimens, and further optimize immunosuppression regimens or establish ex vivo gene correction-based autologous hepatocyte transplantation.


Assuntos
Hepatócitos , Humanos , Transplante Homólogo , Proliferação de Células
16.
J Psychiatr Res ; 163: 180-194, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216772

RESUMO

BACKGROUND: Posttraumatic stress disorder (PTSD), a psychiatric disorder caused by stressful events, is characterized by long-lasting fear memory. The nucleus accumbens shell (NAcS) is a key brain region that regulates fear-associated behavior. Small-conductance calcium-activated potassium channels (SK channels) play a key role in regulating the excitability of NAcS medium spiny neurons (MSNs) but their mechanisms of action in fear freezing are unclear. METHOD: We established an animal model of traumatic memory using conditioned fear freezing paradigm, and investigated the alterations in SK channels of NAc MSNs subsequent to fear conditioning in mice. We then utilized an adeno-associated virus (AAV) transfection system to overexpress the SK3 subunit and explore the function of the NAcS MSNs SK3 channel in conditioned fear freezing. RESULTS: Fear conditioning activated NAcS MSNs with enhanced excitability and reduced the SK channel-mediated medium after-hyperpolarization (mAHP) amplitude. The expression of NAcS SK3 were also reduced time-dependently. The overexpression of NAcS SK3 impaired conditioned fear consolidation without affecting conditioned fear expression, and blocked fear conditioning-induced alterations in NAcS MSNs excitability and mAHP amplitude. Additionally, the amplitudes of mEPSC, AMPAR/NMDAR ratio, and membrane surface GluA1/A2 expression in NAcS MSNs was increased by fear conditioning and returned to normal levels upon SK3 overexpression, indicating that fear conditioning-induced decrease of SK3 expression caused postsynaptic excitation by facilitating AMPAR transmission to the membrane. CONCLUSION: These findings show that the NAcS MSNs SK3 channel plays a critical role in conditioned fear consolidation and that it may influence PTSD pathogenesis, making it a potential therapeutic target against PTSD.


Assuntos
Transtornos Fóbicos , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Camundongos , Animais , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Núcleo Accumbens/metabolismo , Congelamento , Medo
17.
Cell Stem Cell ; 30(5): 617-631.e8, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37059100

RESUMO

Liver resection is the first-line treatment for primary liver cancers, providing the potential for a cure. However, concerns about post-hepatectomy liver failure (PHLF), a leading cause of death following extended liver resection, have restricted the population of eligible patients. Here, we engineered a clinical-grade bioartificial liver (BAL) device employing human-induced hepatocytes (hiHeps) manufactured under GMP conditions. In a porcine PHLF model, the hiHep-BAL treatment showed a remarkable survival benefit. On top of the supportive function, hiHep-BAL treatment restored functions, specifically ammonia detoxification, of the remnant liver and facilitated liver regeneration. Notably, an investigator-initiated study in seven patients with extended liver resection demonstrated that hiHep-BAL treatment was well tolerated and associated with improved liver function and liver regeneration, meeting the primary outcome of safety and feasibility. These encouraging results warrant further testing of hiHep-BAL for PHLF, the success of which would broaden the population of patients eligible for liver resection.


Assuntos
Falência Hepática , Fígado Artificial , Humanos , Animais , Suínos , Hepatócitos , Falência Hepática/cirurgia , Regeneração Hepática
18.
Stem Cell Res Ther ; 13(1): 114, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313986

RESUMO

BACKGROUND: The progression of Biliary Atresia (BA) is associated with the number of reactive ductular cells (RDCs) whose heterogeneity in origin and evolution in humans remains unknown. SOX9-positive liver progenitor-like cells (LPLCs) have been shown to participate in RDCs and new hepatocyte formation during cholestatic liver regeneration in an animal model, which implies the possibility that hepatocyte-reprogrammed LPLCs could be a source of RDCs in BA. The present study aimed to elucidate the characteristics of SOX9-positive LPLCs in BA for exploring new possible therapeutic targets by manipulating the bi-differentiation process of LPLCs to prevent disease progression. METHODS: Twenty-eight patients, including 24 patients with BA and 4 patients with Congenital Choledochal Cyst as the control group, were retrospectively recruited. Liver biopsy samples were classified histologically using a 4-point scale based on fibrosis severity. LPLCs were detected by SOX9 and HNF4A double positive staining. Single immunohistochemistry, double immunohistochemistry, and multiple immunofluorescence staining were used to determine the different cell types and characteristics of LPLCs. RESULTS: The prognostic predictors of BA, namely total bile acid (TBA), RDCs, and fibrosis, were correlated to the emergence of LPLCs. SOX9 and HNF4A double-positive LPLCs co-stained rarely with relevant markers of portal hepatic progenitor cells (portal-HPCs), including CK19, CK7, EPCAM, PROM1 (CD133), TROP2, and AFP. Under cholestasis conditions, LPLCs acquired superior proliferation and anti-senescence ability among hepatocytes. Moreover, LPLCs arranged as a pseudo-rosette structure appeared from the periportal parenchyma to the portal region, which implied the differentiation from hepatocyte-reprogrammed LPLCs to RDCs with the progression of cholestasis. CONCLUSIONS: LPLCs are associated with disease progression and prognostic factors of BA. The bipotent characteristics of LPLCs are different from those of portal-HPCs. As cholestasis progresses, LPLCs appear to gain superior proliferation and anti-senescence ability and continually differentiate to RDCs.


Assuntos
Atresia Biliar , Colestase , Fatores de Transcrição SOX9 , Atresia Biliar/complicações , Atresia Biliar/metabolismo , Atresia Biliar/patologia , Colestase/complicações , Colestase/patologia , Humanos , Fígado/metabolismo , Regeneração Hepática , Estudos Retrospectivos , Fatores de Transcrição SOX9/genética
19.
Environ Sci Pollut Res Int ; 29(56): 84300-84311, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35780272

RESUMO

Benzene is one of the most common occupational hazards in the working environment which was in the list of group 1 carcinogens. This study applied four occupational health risk assessment models: EPA model; MOM model of Singapore; the International Council on Mining and Metals (ICMM) model, and the Technical guide WS/T 777-2021 of China. The models assessed both non-carcinogenic and carcinogenic effects of benzene for 1629 employees in 50 factories in Jiangsu Province (China) who were exposed to benzene in the working environment and analysis the risk between industries by principal component analysis (PCA) method. The highest occupational health hazard of benzene among the five industries is petroleum processing industry, then followed by chemical products manufacturing industry, special equipment manufacturing industry, wood processing and products industry, and at last the pharmaceutical manufacturing industry. The population of abnormal routine blood parameters in the subjects was mostly in the "wood products industry" group, and the concentration of benzene in "wood products industry" group is the lowest in 5 groups. The industries with low exposure concentration have higher blood abnormality rates; this may be caused by the fact that blood damage is more secretive under low occupational health risk.


Assuntos
Exposição Ocupacional , Saúde Ocupacional , Humanos , Benzeno/análise , Exposição Ocupacional/análise , Projetos de Pesquisa , Indústrias , Medição de Risco/métodos , Carcinógenos/análise
20.
Environ Sci Pollut Res Int ; 29(22): 32947-32958, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35020141

RESUMO

The purpose of this article was to investigate the association between the ubiquitin-associated domain-containing protein 2 (UBAC2) gene polymorphism and noise-induced hearing loss (NIHL) and to further explore the role of single-nucleotide polymorphism (SNP) in UBAC2 in NIHL. A case control study involving 660 NIHL cases and 581 controls was conducted in this research. After genotyping by multiplex polymerase chain reaction (PCR) with next-generation sequencing, the correlation between SNPs and NIHL was analyzed using logistic regression analysis. Haplotype analysis was performed by Haploview 4.1 software. Then luciferase reporter assays and siRNA were used to explore the mechanism of SNPs in UBAC2 affecting NIHL susceptibility. The correlation analysis showed that rs3825427 AA genotype, rs9517701 GG genotype, rs7999348 GG genotype, and rs2296860 AA genotype were all associated with increased risk of NIHL (P < 0.05). The haplotype AGGA (rs3825427-rs9517701-rs7999348-rs2296860) also had a higher risk of NIHL (OR = 1.314; 95% CI, 1.098-1.572; P = 0.003). The results of the luciferase reporter assays showed that the fluorescence intensity of CTCF-OE + UBAC2 WT + TK was significantly higher than that of CTCF-NC + UBAC2 WT + TK and CTCF-OE + UBAC2 MT + TK (all P < 0.01). In CTCF knockdown cells, the expression of UBAC2 was also significantly downregulated (P = 0.0038), indicating that the transcription factor CTCF positively regulated the expression of UBAC2 and the rs3825427 C allele acted as an enhancer, which can promote CTCF to bind to the promoter of UBAC2, thereby promoting transcription. UBAC2 gene polymorphism is related to NIHL susceptibility. The UBAC2 rs3825427 regulates the expression level of UBAC2 by affecting the combination of CTCF and DNA, thus affecting the susceptibility of NIHL.


Assuntos
Perda Auditiva Provocada por Ruído , Ruído Ocupacional , Enzimas Ativadoras de Ubiquitina/genética , Estudos de Casos e Controles , China , Estudos Transversais , Predisposição Genética para Doença , Genótipo , Perda Auditiva Provocada por Ruído/genética , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa