RESUMO
Neural networks based on memristive devices1-3 have the ability to improve throughput and energy efficiency for machine learning4,5 and artificial intelligence6, especially in edge applications7-21. Because training a neural network model from scratch is costly in terms of hardware resources, time and energy, it is impractical to do it individually on billions of memristive neural networks distributed at the edge. A practical approach would be to download the synaptic weights obtained from the cloud training and program them directly into memristors for the commercialization of edge applications. Some post-tuning in memristor conductance could be done afterwards or during applications to adapt to specific situations. Therefore, in neural network applications, memristors require high-precision programmability to guarantee uniform and accurate performance across a large number of memristive networks22-28. This requires many distinguishable conductance levels on each memristive device, not only laboratory-made devices but also devices fabricated in factories. Analog memristors with many conductance states also benefit other applications, such as neural network training, scientific computing and even 'mortal computing'25,29,30. Here we report 2,048 conductance levels achieved with memristors in fully integrated chips with 256 × 256 memristor arrays monolithically integrated on complementary metal-oxide-semiconductor (CMOS) circuits in a commercial foundry. We have identified the underlying physics that previously limited the number of conductance levels that could be achieved in memristors and developed electrical operation protocols to avoid such limitations. These results provide insights into the fundamental understanding of the microscopic picture of memristive switching as well as approaches to enable high-precision memristors for various applications. Fig. 1 HIGH-PRECISION MEMRISTOR FOR NEUROMORPHIC COMPUTING.: a, Proposed scheme of the large-scale application of memristive neural networks for edge computing. Neural network training is performed in the cloud. The obtained weights are downloaded and accurately programmed into a massive number of memristor arrays distributed at the edge, which imposes high-precision requirements on memristive devices. b, An eight-inch wafer with memristors fabricated by a commercial semiconductor manufacturer. c, High-resolution transmission electron microscopy image of the cross-section view of a memristor. Pt and Ta serve as the bottom electrode (BE) and top electrode (TE), respectively. Scale bars, 1 µm and 100 nm (inset). d, Magnification of the memristor material stack. Scale bar, 5 nm. e, As-programmed (blue) and after-denoising (red) currents of a memristor are read by a constant voltage (0.2 V). The denoising process eliminated the large-amplitude RTN observed in the as-programmed state (see Methods). f, Magnification of three nearest-neighbour states after denoising. The current of each state was read by a constant voltage (0.2 V). No large-amplitude RTN was observed, and all of the states can be clearly distinguished. g, An individual memristor on the chip was tuned into 2,048 resistance levels by high-resolution off-chip driving circuitry, and each resistance level was read by a d.c. voltage sweeping from 0 to 0.2 V. The target resistance was set from 50 µS to 4,144 µS with a 2-µS interval between neighbouring levels. All readings at 0.2 V are less than 1 µS from the target conductance. Bottom inset, magnification of the resistance levels. Top inset, experimental results of an entire 256 × 256 array programmed by its 6-bit on-chip circuitry into 64 32 × 32 blocks, and each block is programmed into one of the 64 conductance levels. Each of the 256 × 256 memristors has been previously switched over one million cycles, demonstrating the high endurance and robustness of the devices.
RESUMO
Thrombosis is a leading causes of pancreas graft loss after simultaneous pancreas kidney (SPK), pancreas after kidney (PAK), and pancreas transplant alone (PTA). There remains no standardized thromboprophylaxis protocol. The aim of this systematic review and meta-analysis is to evaluate the impact of heparin thromboprophylaxis on the incidence of pancreas thrombosis, pancreas graft loss, bleeding, and secondary outcomes in SPK, PAK, and PTA. Following PRISMA guidelines, we systematically searched BIOSIS®, PubMed®, Cochrane Library®, EMBASE®, MEDLINE®, and Web of Science® on April 21, 2021. Primary peer-reviewed studies that met inclusion criteria were included. Two methods of quantitative synthesis were performed to account for comparative and non-comparative studies. We included 11 studies, comprising of 1,122 patients in the heparin group and 236 patients in the no-heparin group. When compared to the no-heparin control, prophylactic heparinization significantly decreased the risk of early pancreas thrombosis and pancreas loss for SPK, PAK and PTA without increasing the incidence of bleeding or acute return to the operating room. Heparin thromboprophylaxis yields an approximate two-fold reduction in both pancreas thrombosis and pancreas loss for SPK, PAK and PTA. We report the dosage, frequency, and duration of heparin administration to consolidate the available evidence.
Assuntos
Transplante de Rim , Transplante de Pâncreas , Trombose , Tromboembolia Venosa , Humanos , Heparina , Anticoagulantes , Transplante de Rim/efeitos adversos , Transplante de Pâncreas/efeitos adversos , Pâncreas , Trombose/etiologia , Sobrevivência de EnxertoRESUMO
BACKGROUND: The increasing use of kidneys from donations after cardiac death (DCD) for renal transplantation is hindered by negative outcomes owing to organ injury after prolonged warm and cold ischemia-reperfusion. Recently, hydrogen sulfide (H2S) has shown cytoprotective effects against ischemia-reperfusion injury; however, its effectiveness in the context of DCD renal transplantation is unknown. METHODS: We tested a novel 30-day in vivo syngeneic murine model of DCD renal transplantation, in which the donor kidney was clamped for 30 minutes and stored for 18 hours in cold University of Wisconsin (UW) solution or UW with 150 µM sodium hydrogen sulfide (UW + NaHS) before transplantation. We also tested a 7-day in vivo porcine model of DCD renal autotransplantation, in which the left kidney was clamped for 60 minutes and preserved for 24 hours using hypothermic perfusion with UW or UW + 150 µM NaHS before autotransplantation. We collected blood and urine samples periodically, and collected kidney samples at the end point for histopathology and quantitative reverse transcription polymerase chain reaction. RESULTS: Rats that received H2S-treated kidneys showed significantly higher survival, faster recovery of graft function and significantly lower acute tubular necrosis than controls. Pig kidneys perfused with UW + NaHS showed significantly higher renal blood flow and lower renal resistance than control kidneys after 24 hours of perfusion. After autotransplantation, pigs that received H2S-treated kidneys showed significantly lower serum creatinine on days 1 and 7 after transplantation. Rat and pig kidneys treated with H2S also showed more protective gene expression profiles than controls. CONCLUSION: Our findings support the potential use of H2S-supplemented UW solution during cold storage as a novel and practical means to improve DCD graft survival and function.
Assuntos
Sulfeto de Hidrogênio , Transplante de Rim , Soluções para Preservação de Órgãos , Traumatismo por Reperfusão , Adenosina , Alopurinol , Animais , Morte , Glutationa , Humanos , Sulfeto de Hidrogênio/farmacologia , Insulina , Rim/irrigação sanguínea , Camundongos , Soluções para Preservação de Órgãos/farmacologia , Rafinose , Ratos , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , SuínosRESUMO
Cold ischemia-reperfusion injury (IRI) is an inevitable and unresolved problem that poses a great challenge in solid organ transplantation (SOT). It represents a major factor that increases acute tubular necrosis, decreases graft survival, and delays graft function. This complicates graft quality, post-transplant patient care and organ transplantation outcomes, and therefore undermines the success of SOT. Herein, we review recent advances in research regarding novel pharmacological strategies involving the use of different donor molecules of hydrogen sulfide (H2S), the third established member of the gasotransmitter family, against cold IRI in different experimental models of SOT (kidney, heart, lung, liver, pancreas and intestine). Additionally, we discuss the molecular mechanisms underlying the effects of these H2S donor molecules in SOT, and suggestions for clinical translation. Our reviewed findings showed that storage of donor organs in H2S-supplemented preservation solution or administration of H2S to organ donor prior to organ procurement and to recipient at the start and during reperfusion is a novel, simple and cost-effective pharmacological approach to minimize cold IRI, limit post-transplant complications and improve transplantation outcomes. In conclusion, experimental evidence demonstrate that H2S donors can significantly mitigate cold IRI during SOT through inhibition of a complex cascade of interconnected cellular and molecular events involving microcirculatory disturbance and microvascular dysfunction, mitochondrial injury, inflammatory responses, cell damage and cell death, and other damaging molecular pathways while promoting protective pathways. Translating these promising findings from bench to bedside will lay the foundation for the use of H2S donor molecules in clinical SOT in the future.
Assuntos
Isquemia Fria , Sulfeto de Hidrogênio/metabolismo , Transplante de Órgãos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Humanos , Modelos Animais , Traumatismo por Reperfusão/metabolismoRESUMO
Thiosulfate in the form of sodium thiosulfate (STS) is a major oxidation product of hydrogen sulfide (H2S), an endogenous signaling molecule and the third member of the gasotransmitter family. STS is currently used in the clinical treatment of acute cyanide poisoning, cisplatin toxicities in cancer therapy, and calciphylaxis in dialysis patients. Burgeoning evidence show that STS has antioxidant and anti-inflammatory properties, making it a potential therapeutic candidate molecule that can target multiple molecular pathways in various diseases and drug-induced toxicities. This review discusses the biochemical and molecular pathways in the generation of STS from H2S, its clinical usefulness, and potential clinical applications, as well as the molecular mechanisms underlying these clinical applications and a future perspective in kidney transplantation.
Assuntos
Sulfeto de Hidrogênio/metabolismo , Oxirredução , Tiossulfatos/metabolismo , Animais , Hormônios Gastrointestinais/metabolismo , Humanos , Redes e Vias Metabólicas , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismoRESUMO
The use of blood for normothermic and subnormothermic kidney preservation hinders the translation of these approaches and promising therapeutics. This study evaluates whether adding hydrogen sulfide donor AP39 to Hemopure, a blood substitute, during subnormothermic perfusion improves kidney outcomes. After 30 min of renal pedicle clamping, porcine kidneys were treated to 4 h of static cold storage (SCS-4 °C) or subnormothermic perfusion at 21 °C with Hemopure (H-21 °C), Hemopure + 200 nM AP39 (H200nM-21 °C) or Hemopure + 1 µM AP39 (H1µM-21 °C). Then, kidneys were reperfused with Hemopure at 37 °C for 4 h with metabolic support. Perfusate composition, tissue oxygenation, urinalysis and histopathology were analyzed. During preservation, the H200nM-21 °C group exhibited significantly higher urine output than the other groups and significantly higher tissue oxygenation than the H1µM-21 °C group at 1 h and 2h. During reperfusion, the H200nM-21 °C group exhibited significantly higher urine output and lower urine protein than the other groups. Additionally, the H200nM-21 °C group exhibited higher perfusate pO2 levels than the other groups and significantly lower apoptotic injury than the H-21 °C and the H1µM-21 °C groups. Thus, subnormothermic perfusion at 21 °C with Hemopure + 200 nM AP39 improves renal outcomes. Additionally, our novel blood-free model of ex vivo kidney preservation and reperfusion could be useful for studying other therapeutics.
Assuntos
Hemoglobinas , Rim , Preservação de Órgãos/métodos , Compostos Organofosforados , Reperfusão/métodos , Tionas , Animais , Técnicas In Vitro , SuínosRESUMO
Despite international regulatory efforts, the marine areas beyond national jurisdiction continue to be subject to increasing levels of environmental stress and degradation from international shipping activities. Specifically, the absence of effective and enforceable mechanisms has both allowed and incentivized ocean-going vessels to skirt international regulations on ship source pollution, resulting in the dumping of pollutants such as oily bilge water on the high seas with relative impunity. One on-going technological development that has sparked hope for breaking this current status quo is satellite technologies. By utilizing a platform of sensors such as synthetic aperture radar and high-resolution video-imaging sensors, satellite systems are capable of providing and documenting real-time discharges of ship-source pollution within the high seas. While several states have incorporated emerging satellite technologies into their administrative and regulatory practices for maritime environmental protection, their adoption within the judiciary remains limited. This article therefore explores the current legal evidentiary challenges associated with the use of satellite images and data before the courts as evidence of marine pollution on the ABNJ and advocates two policy initiatives for the International Maritime Organization to support their judicial integration.
RESUMO
INTRODUCTION: Cold ischemia-reperfusion injury (IRI) is an inevitable event that increases post-transplant complications. We have previously demonstrated that supplementation of University of Wisconsin (UW) solution with non-FDA-approved hydrogen sulfide (H2S) donor molecules minimizes cold IRI and improves renal graft function after transplantation. The present study investigates whether an FDA-approved H2S donor molecule, sodium thiosulfate (STS), will have the same or superior effect in a clinically relevant rat model of syngeneic orthotopic kidney transplantation. METHOD: Thirty Lewis rats underwent bilateral nephrectomy followed by syngeneic orthotopic transplantation of the left kidney after 24-hour preservation in either UW or UW+STS solution at 4 °C. Rats were monitored to post-transplant day 14 and sacrificed to assess renal function (urine output, serum creatinine and blood urea nitrogen). Kidney sections were stained with H&E, TUNEL, CD68, and myeloperoxidase (MPO) to detect acute tubular necrosis (ATN), apoptosis, macrophage infiltration, and neutrophil infiltration. RESULT: UW+STS grafts showed significantly improved graft function immediately after transplantation, with improved recipient survival compared to UW grafts (p < 0.05). Histopathological examination revealed significantly reduced ATN, apoptosis, macrophage and neutrophil infiltration and downregulation of pro-inflammatory and pro-apoptotic genes in UW+STS grafts compared to UW grafts (p < 0.05). CONCLUSION: We show for the first time that preservation of renal grafts in STS-supplemented UW solution protects against prolonged cold IRI by suppressing apoptotic and inflammatory pathways, and thereby improving graft function and prolonging recipient survival. This could represent a novel clinically applicable therapeutic strategy to minimize the detrimental clinical outcome of prolonged cold IRI in kidney transplantation.
Assuntos
Transplante de Rim/métodos , Soluções para Preservação de Órgãos/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Tiossulfatos/farmacologia , Adenosina/administração & dosagem , Adenosina/farmacologia , Alopurinol/administração & dosagem , Alopurinol/farmacologia , Animais , Apoptose/fisiologia , Nitrogênio da Ureia Sanguínea , Isquemia Fria/efeitos adversos , Creatinina/sangue , Glutationa/administração & dosagem , Glutationa/farmacologia , Insulina/administração & dosagem , Insulina/farmacologia , Testes de Função Renal , Masculino , Soluções para Preservação de Órgãos/administração & dosagem , Rafinose/administração & dosagem , Rafinose/farmacologia , Ratos , Ratos Endogâmicos Lew , Taxa de Sobrevida , Tiossulfatos/administração & dosagemRESUMO
Traffic emissions are associated with the elevation of health risks of people living close to highways. Roadside vegetation barriers have the potential of reducing these risks by decreasing near-road air pollution concentrations. However, while we understand the mechanisms that determine the mitigation caused by solid barriers, we still have questions about how vegetative barriers affect dispersion. The US EPA conducted several field experiments to understand the effects of vegetation barriers on dispersion of pollutants near roadways (e.g., 2008 North Carolina study and 2014 California study) that indicate the reduction of near-road pollutant concentrations can be up to 30% due to the barrier effects. The results of these field studies are being used to develop and evaluate dispersion models that account for the effects of near-road vegetative barriers. These models can be used for evaluating the effectiveness of vegetation barriers as a potential mitigation strategy to reduce exposure to traffic-related pollutants and their associated adverse health effects. This paper presents the results of the analysis of the field studies and discusses dispersion models being used to describe the data in order to simulate the effects of near-road barriers and to develop recommendations for model improvements.