Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 42(3): 1215-1227, 2021 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742919

RESUMO

In this work, the relationships between air quality and pollutant emissions were investigated during the COVID-19 pandemic in Shandong Province. During the quarantine period (from January 24 to February 7, 2020), the concentrations of atmospheric pollutants decreased significantly relative to the period before controls were imposed (from January 15 to 23, 2020). Specifically, except for an increase in the concentration of O3, concentrations of PM10, PM2.5, NO2, SO2, and CO decreased for 72.6 µg·m-3 (45.86%), 47.4 µg·m-3(41.24%), 25.6 µg·m-3 (58.00%), 3.0 µg·m-3 (17.71%), and 0.5 mg·m-3 (31.40%), respectively. RAMS-CMAQ simulation showed that meteorological diffusion had an essential role in improving air quality. Influenced by meteorological factors, emissions of PM10, PM2.5, NO2, SO2, and CO were reduced 26.04%, 33.03%, 28.35%, 43.27%, and 23.29%, respectively. Furthermore, the concentrations of PM10, PM2.5, NO2, SO2, and CO were reduced by 19.82%, 8.21%, 29.65%, -25.56%, and 8.12%, respectively, due to pollution emissions reductions during the quarantine period. O3 concentrations increased by 20.51% during quarantine, caused by both meteorological factors (10.47%) and human activities (10.04%). These results indicate that primary pollutants were more sensitive to emissions reductions; however, secondary pollutants demonstrated a lagged response the emissions reduction and were significantly affected by meteorological factors. The linear relationship between ozone and the emissions reduction was not significant, and was inverse overall. Further investigation are now required on the impact of emissions reduction on ozone pollution control.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Ambientais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Animais , Monitoramento Ambiental , Humanos , Masculino , Pandemias , Material Particulado/análise , SARS-CoV-2 , Ovinos
2.
Huan Jing Ke Xue ; 35(8): 2843-50, 2014 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-25338350

RESUMO

Atmospheric particulate matter (PM10) was collected at sampling locations of Beijing, Tianjin and Zhangjiakou from April 1st to May 24th, 2012. The mass concentration of PM10 and concentrations of ions, elemental carbon (EC) and organic carbon (OC) in PM10 were determined. The results showed that average mass concentration of PM10 were 233.82 microg x m(-3) for Beijing, 279.64 microg x (-3) for Tianjin and 238.13 microg x m(-3) for Zhangjiakou, respectively. Backward trajectories results confirmed dust storm events occurred from 27th to 29th April. The maximum daily mass concentrations of PM10 were 755.54 microg x m(-3) for Beijing, 831.32 microg x m(-3) for Tianjin and 582.82 microg x m(-3) for Zhangjiakou during the dust storm episodes, respectively. Water-soluble ions (Na+, NH4+, Ca2+, K+, F-, Cl-, NO3-, SO4(2-)), organic carbon (OC) and elemental carbon (EC) were major aerosol components during the dust storm episodes, and their concentrations were higher than non-dust storm days. In addition, dust storm caused increases in NO3-, SO4(2-) and enrichment of secondary organic carbon (SOC) concentration relative to OC, suggesting that chemical reaction processes involving gas-particle conversion occurred during the long-distance transport of aerosol particles.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano , Aerossóis/análise , Carbono/análise , China , Poeira/análise , Íons/análise , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa