Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Small ; : e2400534, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597736

RESUMO

Hydrogel actuators with anisotropic structures exhibit reversible responsiveness upon the trigger of various external stimuli, rendering them promising for applications in many fields including artificial muscles and soft robotics. However, their effective operation across multiple environments remains a persistent challenge, even for widely studied thermo-responsive polymers like poly(N-isopropyl acrylamide) (PNIPAm). Current attempts to address this issue are hindered by complex synthetic procedures or specific substrates. This study introduces a straightforward methodology to grow a thin, dense PNIPAm nanoparticle layer on diverse hydrogel surfaces, creating a highly temperature-sensitive hydrogel actuator. This actuator demonstrates adaptability across various environments, including water, oil, and open air, owing to its distinct structure facilitating self-water circulation during actuation. The thin PNIPAm layer consists of interconnected PNIPAm nanoparticles synthesized via in situ interfacial precipitation polymerization, seamlessly bonded to the hydrogel substrate through an interfacial layer containing hybrid hydrogel/PNIPAm nanoparticles. This unique anisotropic structure ensures exceptional structural stability without interfacial delamination, even enduring harsh treatments such as freezing, ultrasonic irradiation, and prolonged water immersion. Remarkably, PNIPAm films on hydrogel surfaces which enable programmable 3D actuation can also be precisely patterned. This synthetic approach opens a novel pathway for fabricating advanced hydrogel actuators with broad-ranging applications.

2.
Small ; 20(26): e2310572, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38247188

RESUMO

Integrating hydrogel with other materials is always challenging due to the low mass content of hydrogels and the abundance of water at the interfaces. Adhesion through nanoparticles offers characteristics such as ease of use, reversibility, and universality, but still grapples with challenges like weak bonding. Here, a simple yet powerful strategy using the formation of nanoparticles in situ is reported, establishing strong interfacial adhesion between various hydrogels and substrates including elastomers, plastics, and biological tissue, even under wet conditions. The strong interfacial bonding can be formed in a short time (60 s), and gradually strengthened to 902 J m-2 adhesion energy within an hour. The interfacial layer's construction involves chain entanglement and other non-covalent interactions like coordination and hydrogen bonding. Unlike the permanent bonding seen in most synthetic adhesives, these nanoparticle adhesives can be efficiently triggered for removal by acidic solutions. The simplicity of the precursor diffusion and precipitation process in creating the interfacial layer ensures broad applicability to different substrates and nanoparticle adhesives without compromising robustness. The tough adhesion provided by nanoparticles allows the hydrogel-elastomer hybrid to function as a triboelectric nanogenerator (TENG), facilitating reliable electrical signal generation and output performance due to the robust interface.

3.
Macromol Rapid Commun ; : e2400350, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895813

RESUMO

Antimicrobial resistance is a global healthcare challenge that urgently needs the development of new therapeutic agents. Antimicrobial peptides and mimics thereof are promising candidates but mostly suffer from inherent toxicity issues due to the non-selective binding of cationic groups with mammalian cells. To overcome this toxicity issue, this work herein reports the synthesis of a smart antimicrobial dendron with masked cationic groups (Gal-Dendron) that could be uncaged in the presence of ß-galactosidase enzyme to form the activated Enz-Dendron and confer antimicrobial activity. Enz-Dendron show bacteriostatic activity toward Gram-negative (P. aeruginosa and E. coli) and Gram-positive (S. aureus) bacteria with minimum inhibitory concentration values of 96 µm and exerted its antimicrobial mechanism via a membrane disruption pathway, as indicated by inner and outer membrane permeabilization assays. Crucially, toxicity studies confirmed that the masked prodrug Gal-Dendron exhibited low hemolysis and is at least 2.4 times less toxic than the uncaged cationic Enz-Dendron, thus demonstrating the advantage of masking the cationic groups with responsive immolative linkers to overcome toxicity and selectivity issues. Overall, this study highlights the potential of designing new membrane-disruptive antimicrobial agents that are more biocompatible via the amine uncaging strategy.

4.
Nano Lett ; 23(23): 11243-11251, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38011156

RESUMO

Self-propelled nanomotors represent a promising class of adaptable and versatile technologies with broad applications in the realms of biomedicine and environmental remediation. Herein, we report a biocatalytic nanomotor based on a covalent-organic framework (COF) that demonstrates intelligent and switchable motion triggered by a blue-to-red light switch. Consequently, when exposed to blue light, the nanomotor significantly enhances the removal of contaminants in aqueous solutions due to its elevated mobility. Conversely, it effectively deactivates its motion and contaminant removal upon exposure to red light. This study explores the heterogeneous assembly strategy of the COF-based nanomotor and its light-controlled propulsion performance and provides a novel strategy for the regulation of movement, offering valuable insights for the design and practical applications of nanomotors.

5.
BMC Med ; 20(1): 449, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36397104

RESUMO

BACKGROUND: Previous studies suggested that moderate coffee and tea consumption are associated with lower risk of mortality. However, the association between the combination of coffee and tea consumption with the risk of mortality remains unclear. This study aimed to evaluate the separate and combined associations of coffee and tea consumption with all-cause and cause-specific mortality. METHODS: This prospective cohort study included 498,158 participants (37-73 years) from the UK Biobank between 2006 and 2010. Coffee and tea consumption were assessed at baseline using a self-reported questionnaire. All-cause and cause-specific mortalities, including cardiovascular disease (CVD), respiratory disease, and digestive disease mortality, were obtained from the national death registries. Cox regression analyses were conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: After a median follow-up of 12.1 years, 34,699 deaths were identified. The associations of coffee and tea consumption with all-cause and cause-specific mortality attributable to CVD, respiratory disease, and digestive disease were nonlinear (all P nonlinear < 0.001). The association between separate coffee consumption and the risk of all-cause mortality was J-shaped, whereas that of separate tea consumption was reverse J-shaped. Drinking one cup of coffee or three cups of tea per day seemed to link with the lowest risk of mortality. In joint analyses, compared to neither coffee nor tea consumption, the combination of < 1-2 cups/day of coffee and 2-4 cups/day of tea had lower mortality risks for all-cause (HR, 0.78; 95% CI: 0.73-0.85), CVD (HR, 0.76; 95% CI: 0.64-0.91), and respiratory disease (HR, 0.69; 95% CI: 0.57-0.83) mortality. Nevertheless, the lowest HR (95% CI) of drinking both < 1-2 cup/day of coffee and ≥ 5 cups/day of tea for digestive disease mortality was 0.42 (0.34-0.53). CONCLUSIONS: In this large prospective study, separate and combined coffee and tea consumption were inversely associated with all-cause and cause-specific mortality.


Assuntos
Café , Mortalidade , Chá , Humanos , Doenças Cardiovasculares/mortalidade , Estudos Prospectivos , Fatores de Risco , Doenças Respiratórias/mortalidade , Doenças do Sistema Digestório/mortalidade , Adulto , Pessoa de Meia-Idade , Idoso , Reino Unido
6.
Soft Matter ; 18(29): 5465-5473, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35822864

RESUMO

Wrinkles are commonly observed in uniaxially stretched hyperelastic membranes and eventually disappear with the increase of stretching. The widely used scheme at present assumes the material parameters to be empirical values and straightforwardly considers some constitutive models to explore the wrinkling and restabilization behavior. However, this simple treatment may cause deviation from experiment by ignoring the applicability of the models and the authenticity of the input parameters, prompting us to report based on realistic material parameters. This paper presents an experimental, theoretical and numerical investigation on the wrinkling and restabilization behavior of hyperelastic materials. By fitting experimental stress-strain curves of PDMS films, we confirm that the 3-term Ogden model bears a closer resemblance to the experimental data than the widely used neo-Hookean, Mooney-Rivlin, and Arruda-Boyce models under certain circumstances. The simulation results indicate that different constitutive models quantitatively affect the critical buckling strain, wrinkling amplitudes, and restabilization points. Furthermore, the isolated central bifurcation point solved by Koiter stability theory agrees well with the simulation and experimental results. A 3D phase diagram of stability boundaries was established to gain a comprehensive insight into the effects of geometric parameters (length, width, and thickness) on wrinkling.

7.
Langmuir ; 34(12): 3642-3653, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29478318

RESUMO

Gold nanoparticles confined into the walls of periodic mesoporous organosilicas (PMOs) with controllable morphology have been successfully fabricated through a one-pot method by using different CO2 pressures. The synthesis can be easily conducted in a mixed aqueous solution by using HAuCl4 as gold source and bis[3-(triethoxysilyl)propyl] tetrasulfide and tetramethoxysilane as the organosilica precursor. P123 and compressed CO2 served as the template and catalytic/regulative agent, respectively. Transmission electron microscopy, N2 adsorption, and X-ray diffraction were employed to characterize the structure of the obtained composite materials. To further investigate the formation mechanism, a series of ordered PMOs with one-dimensional nanotube, two-dimensional hexagonal, vesicle-like, and cellular foam structures were obtained by using different CO2 pressures without the gold source. The mechanism for mesostructure evolution of PMOs with different CO2 pressures was proposed and discussed in detail. The catalytic performance of Au-based PMOs was evaluated for the reduction of 4-nitrophenol (4-NP). These obtained composites with different mesostructures not only exhibit excellent catalytic activity, high conversion rate, and remarkable thermal stability, but they also exhibit morphology-dependent reaction properties in the reduction of 4-NP. The possible reaction pathway of the reactants to embedded Au active sites was proposed and schemed.

8.
J Am Chem Soc ; 139(24): 8337-8345, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28537724

RESUMO

A novel approach to produce chiral diaryl sulfoxides from aryl benzyl sulfoxides and aryl bromides via an enantioselective arylation of aryl sulfenate anions is reported. A (JosiPhos)Pd-based catalyst successfully promotes the asymmetric arylation reaction with good functional group compatibility. A wide range of enantioenriched diaryl, aryl heteroaryl, and even diheteroaryl sulfoxides were generated. Many of the sulfoxides prepared herein would be difficult to prepare via classic enantioselective oxidation of sulfides, including Ph(Ph-d5)SO (90% ee, 95% yield). A DFT-based computational study suggested that chiral induction originates from two primary factors: (i) both a kinetic and a thermodynamic preference for oxidative addition that places the bromide trans to the JosiPhos-diarylphosphine moiety and (ii) Curtin-Hammett-type control over the interconversion between O- and S-bound isomers of palladium sulfenate species following rapid interconversion between re- and si-bound transmetalation products, re/si-Pd-OSPh (re/si-PdO-trans).

9.
Soft Matter ; 13(41): 7505-7513, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29022980

RESUMO

The effect of compressed CO2 on the properties of ordered mesoporous carbon (OMC) was investigated based on the self-assembly of surfactants in aqueous solution under mild conditions, and the acidic or basic conditions commonly used in traditional methods were substituted by compressed CO2. Compressed CO2 acts as both a physiochemical additive and a reagent to produce an acid catalyst in the synthesis. This new one-pot assembly approach can efficiently adjust the porous characteristics of OMC by employing different amounts of compressed CO2, and the self-assembly mechanism is proposed. The spherical micelles formed by triblock copolymer Pluronic F127 serve as a structure-directing agent for the controllable synthesis of nanomaterials. Resorcinol/phloroglucinol and formaldehyde are used as carbon-yielding components. It was found that CO2 can penetrate into the hydrocarbon-chain region of the F127 micelles, leading to template swelling and influencing the properties of OMC. The surfactant and precursors attracted by H-bonding interactions self-assemble and produce OMC after polymerization and carbonization. The resulting OMC as a supercapacitor electrode material exhibits outstanding specific capacitances, and the electrochemical performances change as the structural properties are varied.

10.
Soft Matter ; 13(34): 5704-5713, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28748980

RESUMO

A systematic study on the structural properties and component information of periodic mesoporous organosilicas synthesized by using different nonionic surfactants as templates with compressed CO2 was carried out. Triblock copolymers (F127, F108, and P123), oligomeric alkyl poly(ethylene oxide) (Brij-58 and Brij-76), and alkyl-phenol poly(ethylene oxide) (TX-100) have been employed as templates and BTEB as a bridged organosilica precursor to synthesize PMO materials at 5.90 MPa. The structure and morphology of the obtained materials were investigated by means of transmission electron microscopy (TEM), nitrogen sorption isotherms, solid Si and C NMR, and FTIR. Efforts have also been made to compare the differences in structural and morphological properties among these samples synthesized under similar conditions. We also investigate the synthesis of PMOs using F127 as the template at different CO2 pressures. It was found that the interaction between different organic silica precursors and surfactants with a variety of hydrophilic and hydrophobic chains is the key factor for the disorder degree of mesostructures. On this basis, the possible mechanism of formation of PMOs synthesized using a nonionic surfactant (triblock copolymer) as the template with compressed CO2 is illustrated and discussed.

11.
Angew Chem Int Ed Engl ; 55(7): 2526-30, 2016 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-26756125

RESUMO

The first two highly enantioselective palladium-catalyzed allylic alkylations with benzylic nucleophiles, activated with Cr(CO)3 , have been developed. These methods enable the enantioselective synthesis of α-2-propenyl benzyl motifs, which are important scaffolds in natural products and pharmaceuticals. A variety of cyclic and acyclic allylic carbonates are competent electrophilic partners furnishing the products in excellent enantioselectivity (up to 99 % ee and 92 % yield). This approach was employed to prepare a nonsteroidal anti-inflammatory drug analogue.


Assuntos
Paládio/química , Tolueno/química , Alquilação , Catálise
12.
J Am Chem Soc ; 137(32): 10346-50, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26207699

RESUMO

Carbon-carbon triple bonds of alkynes are ubiquitous. They serve as valuable starting materials that can be transformed into a vast array of diverse materials, with applications ranging from medicinal chemistry to electronic materials. The methods used to prepare alkynes involve stoichiometric reactions and the most popular install only a single carbon rather than uniting larger fragments. These methods are useful, but they are limited by harsh conditions or the need to prepare reagents. Introduced herein is the first catalytic method to prepare carbon-carbon triple bonds from precursors that do not contain such linkages. By coupling benzaldehyde and benzyl chloride derivatives under basic conditions with an organocatalyst, good yields of alkynes are obtained. The catalyst, a highly reactive sulfenate anion, is readily generated under the reaction conditions from air-stable precursors. This method represents an attractive organocatalytic alternative to well-established stoichiometric approaches to alkynes and to transition-metal-based alkyne functionalization methods in various applications.

13.
J Am Chem Soc ; 137(43): 13887-93, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26460506

RESUMO

A unique palladium-catalyzed arylation of alkyl sulfenate anions is introduced that affords aryl alkyl sulfoxides in high yields. Due to the base sensitivity of the starting sulfoxides, sulfenate anion intermediates, and alkyl aryl sulfoxide products, the use of a mild method to generate alkyl sulfenate anions was crucial to the success of this process. Thus, a fluoride triggered elimination strategy was employed with alkyl 2-(trimethylsilyl)ethyl sulfoxides to liberate the requisite alkyl sulfenate anion intermediates. In the presence of palladium catalysts with bulky monodentate phosphines (SPhos and Cy-CarPhos) and aryl bromides or chlorides, alkyl sulfenate anions were readily arylated. Moreover, the thermal fragmentation and the base promoted elimination of alkyl sulfoxides was overridden. The alkyl sulfenate anion arylation exhibited excellent chemoselectivity in the presence of functional groups, such as anilines and phenols, which are also known to undergo palladium catalyzed arylation reactions.

14.
Angew Chem Int Ed Engl ; 53(1): 260-4, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24273189

RESUMO

A novel approach to produce diaryl sulfoxides from aryl benzyl sulfoxides is reported. Optimization of the reaction conditions was performed using high-throughput experimentation techniques. The [Pd(dba)2 ]/NiXantPhos catalyst system successfully promotes a triple relay process involving sulfoxide α-arylation, CS bond cleavage, and CS bond formation. The byproduct benzophenone is formed by an additional palladium-catalyzed process. It is noteworthy that palladium-catalyzed benzylative CS bond cleavage of sulfoxides is unprecedented. A wide range of aryl benzyl sulfoxides, as well as alkyl benzyl sulfoxides with various (hetero)aryl bromides were employed in the triple relay process in good to excellent yields (85-99 %). Moreover, aryl methyl sulfoxides, dibenzyl sulfoxides, and dimethylsulfoxide could be utilized to generate diaryl sulfoxides involving multiple catalytic cycles by a single catalyst.


Assuntos
Brometos/química , Paládio/química , Sulfóxidos/química , Catálise , Estrutura Molecular
15.
Angew Chem Int Ed Engl ; 53(40): 10755-8, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25111259

RESUMO

Sulfenate anions are known to act as highly reactive species in the organic arena. Now they premiere as organocatalysts. Proof of concept is offered by the sulfoxide/sulfenate-catalyzed (1-10 mol%) coupling of benzyl halides in the presence of base to generate trans-stilbenes in good to excellent yields (up to 99%). Mechanistic studies support the intermediacy of sulfenate anions, and the deprotonated sulfoxide was determined to be the resting state of the catalyst.


Assuntos
Ânions/química , Compostos de Benzil/química , Estilbenos/síntese química , Ácidos Sulfênicos/química , Sulfóxidos/química , Catálise , Halogênios/química , Modelos Moleculares , Estilbenos/química
16.
Chemosphere ; 351: 141160, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219985

RESUMO

It remains a significant challenge to develop a kind of cost-effective and eco-friendly adsorbent with strong immobilization capabilities for ammonium in farmland. In this work, we employed Ca/Al layered double hydroxide-supported carbon dots (CDs@Ca/Al-LDHs) as a novel and efficient adsorbent for ammonium immobilization both in aqueous and soil environments. Such a composite could exhibit a high adsorption capacity towards ammonium in solution, which was four times higher than zeolite and three times higher than biochar under the same conditions. The mechanism investigations revealed that electrostatic interactions between the negatively charged CDs and the positively charged ammonium played a key role in the adsorption. In 30-day leaching experiments, the fabricated composite cumulatively reduced ammonium and nitrate by 6.3% and 9.7%, respectively at a dosage of 0.1% (w/w). Incubation experiments further confirmed that the developed composite could effectively inhibit ammonia volatilization and nitrification by immobilizing the ammonium within soil matrices. Our results demonstrated that CDs@Ca/Al-LDHs represented a promising candidate for cost-effective and eco-friendly immobilization of excess ammonium from over-fertilized farmland.


Assuntos
Compostos de Amônio , Carbono , Nitrogênio , Fazendas , Hidróxidos , Adsorção , Solo
17.
Biomolecules ; 14(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38785928

RESUMO

The combination of magnetic fields and magnetic nanoparticles (MNPs) to kill cancer cells by magneto-mechanical force represents a novel therapy, offering advantages such as non-invasiveness, among others. Pulsed magnetic fields (PMFs) hold promise for application in this therapy due to advantages such as easily adjustable parameters; however, they suffer from the drawback of narrow pulse width. In order to fully exploit the potential of PMFs and MNPs in this therapy, while maximizing therapeutic efficacy within the constraints of the narrow pulse width, a feature-matching theory is proposed, encompassing the matching of three aspects: (1) MNP volume and critical volume of Brownian relaxation, (2) relaxation time and pulse width, and (3) MNP shape and the intermittence of PMF. In the theory, a microsecond-PMF generator was developed, and four kinds of MNPs were selected for in vitro cell experiments. The results demonstrate that the killing rate of the experimental group meeting the requirements of the theory is at least 18% higher than the control group. This validates the accuracy of our theory and provides valuable guidance for the further application of PMFs in this therapy.


Assuntos
Campos Magnéticos , Melanoma , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/terapia , Sobrevivência Celular/efeitos dos fármacos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico
18.
IEEE Trans Nanobioscience ; 23(3): 482-490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625761

RESUMO

Pulsed magnetic field treatment can enhance cell membrane permeability, allowing large molecular substances that normally cannot pass through the cell membrane to enter the cell. This research holds significant prospects for biomedical applications. However, the mechanism underlying pulsed magnetic field-induced cell permeabilization remains unclear, impeding further progress in research related to pulsed magnetic field. Currently, hypotheses about the mechanism are struggling to explain experimental results. Therefore, this study developed a parameter-adjustable pulsed magnetic field generator and designed experiments. Starting from the widely accepted hypothesis of "induced electric fields by pulsed magnetic field," we conducted a preliminary exploration of the biophysical mechanisms underlying pulsed magnetic field-induced cell permeabilization. Finally, we have arrived at an intriguing conclusion: under the current technical parameters, the impact of the pulsed magnetic field itself is the primary factor influencing changes in cell membrane permeability, rather than the induced electric field. This conclusion holds significant implications for understanding the biophysical mechanisms behind pulsed magnetic field therapy and its potential biomedical applications.


Assuntos
Permeabilidade da Membrana Celular , Campos Magnéticos , Permeabilidade da Membrana Celular/efeitos da radiação , Permeabilidade da Membrana Celular/fisiologia , Animais , Humanos , Membrana Celular/efeitos da radiação , Membrana Celular/fisiologia
19.
Geroscience ; 46(1): 1229-1240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37526906

RESUMO

Epidemiological studies of sugar-sweetened beverages (SSBs) and artificially sweetened beverages (ASBs) with Alzheimer's disease (AD) have provided controversial findings. Furthermore, little is known about the association between pure fruit/vegetable juices and AD. The present study aims to estimate the associations of SSBs, ASBs, and pure fruit/vegetable juices with AD, and to evaluate the theoretical effects of replacing SSBs and ASBs with the different consumption of pure fruit/vegetable juices on the risk of AD. This prospective cohort study of the UK Biobank included 206,606 participants aged 39-72 years free of dementia at baseline between 2006 and 2010. Dietary intake of SSBs, ASBs, and pure fruit/vegetable juices (naturally sweet juices) were collected using a 24-h dietary recall questionnaire completed between 2009 and 2012. Incident AD was identified by medical and mortality records. Cox proportional hazard models and substitution models were conducted to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). A total of 699 cases of AD were identified over a median follow-up of 9.5 years. The consumption of SSBs and ASBs (> 2 units/d) were associated with a higher risk of AD. However, participants who drank > 1-2 units/d of pure fruit/vegetable juices were associated with a lower risk of AD. In substitution models, replacing SSBs with an equivalent consumption of pure fruit/vegetable juices could be associated with a risk reduction of AD.


Assuntos
Doença de Alzheimer , Açúcares , Humanos , Açúcares/efeitos adversos , Edulcorantes/efeitos adversos , Doença de Alzheimer/epidemiologia , Estudos Prospectivos , Inquéritos e Questionários
20.
Sci Rep ; 14(1): 1047, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200098

RESUMO

Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common congenital facial malformation with a complex, incompletely understood origin. Long noncoding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, potentially shedding light on NSCL/P's etiology. This study aimed to identify critical lncRNAs and construct regulatory networks to unveil NSCL/P's underlying molecular mechanisms. Integrating gene expression profiles from the Gene Expression Omnibus (GEO) database, we pinpointed 30 dysregulated NSCL/P-associated lncRNAs. Subsequent analyses enabled the creation of competing endogenous RNA (ceRNA) networks, lncRNA-RNA binding protein (RBP) interaction networks, and lncRNA cis and trans regulation networks. RT-qPCR was used to examine the regulatory networks of lncRNA in vivo and in vitro. Furthermore, protein levels of lncRNA target genes were validated in human NSCL/P tissue samples and murine palatal shelves. Consequently, two lncRNAs and three mRNAs: FENDRR (log2FC = - 0.671, P = 0.040), TPT1-AS1 (log2FC = 0.854, P = 0.003), EIF3H (log2FC = - 1.081, P = 0.041), RBBP6 (log2FC = 0.914, P = 0.037), and SRSF1 (log2FC = 0.763, P = 0.026) emerged as potential contributors to NSCL/P pathogenesis. Functional enrichment analyses illuminated the biological functions and pathways associated with these lncRNA-related networks in NSCL/P. In summary, this study comprehensively delineates the dysregulated transcriptional landscape, identifies associated lncRNAs, and reveals pivotal sub-networks relevant to NSCL/P development, aiding our understanding of its molecular progression and setting the stage for further exploration of lncRNA and mRNA regulation in NSCL/P.


Assuntos
Fenda Labial , Fissura Palatina , RNA Longo não Codificante , Humanos , Animais , Camundongos , Fissura Palatina/genética , Fenda Labial/genética , RNA Longo não Codificante/genética , Bases de Dados Factuais , Hidrolases , RNA Mensageiro/genética , Proteínas de Ligação a DNA , Ubiquitina-Proteína Ligases , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa