Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Opt Express ; 32(2): 2490-2506, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297777

RESUMO

Spectral remote sensing reflectance, Rrs(λ) (sr-1), is the fundamental quantity used to derive a host of bio-optical and biogeochemical properties of the water column from satellite ocean color measurements. Estimation of uncertainty in those derived geophysical products is therefore dependent on knowledge of the uncertainty in satellite-retrieved Rrs. Furthermore, since the associated algorithms require Rrs at multiple spectral bands, the spectral (i.e., band-to-band) error covariance in Rrs is needed to accurately estimate the uncertainty in those derived properties. This study establishes a derivative-based approach for propagating instrument random noise, instrument systematic uncertainty, and forward model uncertainty into Rrs, as retrieved using NASA's multiple-scattering epsilon (MSEPS) atmospheric correction algorithm, to generate pixel-level error covariance in Rrs. The approach is applied to measurements from Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite and verified using Monte Carlo (MC) analysis. We also make use of this full spectral error covariance in Rrs to calculate uncertainty in phytoplankton pigment chlorophyll-a concentration (chla, mg/m3) and diffuse attenuation coefficient of downwelling irradiance at 490 nm (Kd(490), m-1). Accounting for the error covariance in Rrs generally reduces the estimated relative uncertainty in chla by ∼1-2% (absolute value) in waters with chla < 0.25 mg/m3 where the color index (CI) algorithm is used. The reduction is ∼5-10% in waters with chla > 0.35 mg/m3 where the blue-green ratio (OCX) algorithm is used. Such reduction can be higher than 30% in some regions. For Kd(490), the reduction by error covariance is generally ∼2%, but can be higher than 20% in some regions. The error covariance in Rrs is further verified through forward-calculating chla from MODIS-retrieved and in situ Rrs and comparing estimated uncertainty with observed differences. An 8-day global composite of propagated uncertainty shows that the goal of 35% uncertainty in chla can be achieved over deep ocean waters (chla ≤ 0.1 mg/m3). While the derivative-based approach generates reasonable error covariance in Rrs, some assumptions should be updated as our knowledge improves. These include the inter-band error correlation in top-of-atmosphere reflectance, and uncertainties in the calibration of MODIS 869 nm band, in ancillary data, and in the in situ data used for system vicarious calibration.

2.
Ecotoxicol Environ Saf ; 273: 116096, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367609

RESUMO

During surgery, the use of a high-frequency electric knife produces smoke, which can be harmful to the health of indoor medical staff and patients. The quantity and particle size distribution of smoke particles produced by different tissues may vary. Understanding the release characteristics of these smoke particles is necessary to clarify their impact on the surgical environment and to seek effective smoke control methods. A previous comparative analysis of human and pig tissues revealed that they share similar water and fat compositions in certain anatomical regions. In this study, we investigated the emission characteristics of smoke particles from various tissues of pigs (skeletal muscle, liver, kidney, skin, and subcutaneous fat) under different operating powers of an electric knife. We measured the indoor particle number concentration (particle concentration), and estimated the PM2.5 mass concentration (PM2.5 concentration), particle size distribution, and emission rate of the smoke particles. The study obtained the particle emission rates of different tissues under different electric knife operating powers, results of which showed that (1) during the operation of the electric knife, mainly small particles below 1 µm are produced. Among them, particles of 0.3 µm were the most abundant, with a particle concentration level of up to 109 particles/m3, accounting for 85.17-97.64% of the total particle number, and as the particle size increased, the particle concentration and percentage decreased significantly. (2) The water and fat compositions of different tissues influenced the indoor particle concentration and emission rate of the smoke emitted by the electric knife. Among different tissues, subcutaneous fat tissue had the lowest particle concentration and emission rate. (3) The electric knife operating power mainly affected particles below 1 µm, and except for kidney tissue, the indoor concentration and emission rate of these particle sizes were positively correlated with the power. The experimental results can provide data reference for the use of high-frequency electric knives in surgeries involving different human tissues in the operating room.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Humanos , Animais , Suínos , Fumaça/efeitos adversos , Fumaça/análise , Material Particulado/análise , Tamanho da Partícula , Eletricidade , Água/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
3.
Compr Rev Food Sci Food Saf ; 23(4): e13358, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923121

RESUMO

Low-cost, reliable, and efficient biosensors are crucial in detecting residual heavy metal ions (HMIs) in food products. At present, based on distance-induced localized surface plasmon resonance of noble metal nanoparticles, enzyme-mimetic reaction of nanozymes, and chelation reaction of metal chelators, the constructed optical sensors have attracted wide attention in HMIs detection. Besides, based on the enrichment and signal amplification strategy of nanomaterials on HMIs and the construction of electrochemical aptamer sensing platforms, the developed electrochemical biosensors have overcome the plague of low sensitivity, poor selectivity, and the inability of multiplexed detection in the optical strategy. Moreover, along with an in-depth discussion of these different types of biosensors, a detailed overview of the design and application of innovative devices based on these sensing principles was provided, including microfluidic systems, hydrogel-based platforms, and test strip technologies. Finally, the challenges that hinder commercial application have also been mentioned. Overall, this review aims to establish a theoretical foundation for developing accurate and reliable sensing technologies and devices for HMIs, thereby promoting the widespread application of biosensors in the detection of HMIs in food.


Assuntos
Técnicas Biossensoriais , Contaminação de Alimentos , Metais Pesados , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Metais Pesados/análise , Contaminação de Alimentos/análise , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação
4.
Crit Rev Food Sci Nutr ; 63(28): 9330-9348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35452320

RESUMO

Nanozymes with excellent broad-spectrum antibacterial properties offers an alternative strategy for food preservation. This review comprehensively summarized the antibacterial mechanisms of nanozymes, including the generation of reactive oxygen species (ROS) and the destruction of biofilms. Besides, the primary factors (size, morphology, hybridization, light, etc.) regulating the antibacterial activity of different types of nanozymes were highlighted in detail, which provided effective guidance on how to design highly efficient antibacterial nanozymes. Moreover, this review presented elaborated viewpoints on the unique applications of nanozymes in food preservation, including the selection of nanozymes loading matrix, fabrication techniques of nanozymes-based antibacterial films/coatings, and the recent advances in the application of nanozymes-based antibacterial films/coatings in food preservation. In the end, the safety issues of nanozymes have also been mentioned. Overall, this review provided new avenues in the field of food preservation and displayed great prospects.


Assuntos
Nanoestruturas , Conservação de Alimentos , Antibacterianos/farmacologia , Espécies Reativas de Oxigênio
5.
J Sep Sci ; 46(19): e2300108, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37582657

RESUMO

In this study, an efficient, sensitive, and convenient magnetic solid-phase extraction method combined with ultra-high performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed for the simultaneous determination of 19 succinate dehydrogenase inhibitor fungicide residues in six different food matrices The synthesized tetraethylenepentamine magnetic graphene oxide nanocomposite showed the advantages of good dispersibility, large specific surface area (113.93 m2 /g) and large pore volume (0.25 cm3 /g), making it an ideal succinate dehydrogenase inhibitor pretreatment adsorbent. The MSPE-UHPLC-MS/MS method showed linearity in the range of 5.0-800.0 µg/kg, with a correlation coefficient (R2 ) > 0.99, and a limit of quantification of 5 µg/kg. The recovery of succinate dehydrogenase inhibitor fungicides was in the range of 71.2%-119.4%. The MSPE method is simple, rapid, and efficient, making it an ideal alternative to sample pretreatment in the determination of trace succinate dehydrogenase inhibitor fungicides in complex matrices.

6.
Opt Express ; 30(17): 31415-31438, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36242224

RESUMO

The spectral distribution of marine remote sensing reflectance, Rrs, is the fundamental measurement of ocean color science, from which a host of bio-optical and biogeochemical properties of the water column can be derived. Estimation of uncertainty in these derived properties is thus dependent on knowledge of the uncertainty in satellite-retrieved Rrs (uc(Rrs)) at each pixel. Uncertainty in Rrs, in turn, is dependent on the propagation of various uncertainty sources through the Rrs retrieval process, namely the atmospheric correction (AC). A derivative-based method for uncertainty propagation is established here to calculate the pixel-level uncertainty in Rrs, as retrieved using NASA's multiple-scattering epsilon (MSEPS) AC algorithm and verified using Monte Carlo (MC) analysis. The approach is then applied to measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite, with uncertainty sources including instrument random noise, instrument systematic uncertainty, and forward model uncertainty. The uc(Rrs) is verified by comparison with statistical analysis of coincident retrievals from MODIS and in situ Rrs measurements, and our approach performs well in most cases. Based on analysis of an example 8-day global products, we also show that relative uncertainty in Rrs at blue bands has a similar spatial pattern to the derived concentration of the phytoplankton pigment chlorophyll-a (chl-a), and around 7.3%, 17.0%, and 35.2% of all clear water pixels (chl-a ≤ 0.1 mg/m3) with valid uc(Rrs) have a relative uncertainty ≤ 5% at bands 412 nm, 443 nm, and 488 nm respectively, which is a common goal of ocean color retrievals for clear waters. While the analysis shows that uc(Rrs) calculated from our derivative-based method is reasonable, some issues need further investigation, including improved knowledge of forward model uncertainty and systematic uncertainty in instrument calibration.

7.
Appl Opt ; 61(22): 6453-6475, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255869

RESUMO

Ocean color (OC) remote sensing requires compensation for atmospheric scattering and absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC allows inference of parameters such as spectrally resolved remote sensing reflectance (Rrs(λ);sr-1) at the ocean surface from the top-of-atmosphere reflectance. Often the uncertainty of this process is not fully explored. Bayesian inference techniques provide a simultaneous AC and uncertainty assessment via a full posterior distribution of the relevant variables, given the prior distribution of those variables and the radiative transfer (RT) likelihood function. Given uncertainties in the algorithm inputs, the Bayesian framework enables better constraints on the AC process by using the complete spectral information compared to traditional approaches that use only a subset of bands for AC. This paper investigates a Bayesian inference research method (optimal estimation [OE]) for OC AC by simultaneously retrieving atmospheric and ocean properties using all visible and near-infrared spectral bands. The OE algorithm analytically approximates the posterior distribution of parameters based on normality assumptions and provides a potentially viable operational algorithm with a reduced computational expense. We developed a neural network RT forward model look-up table-based emulator to increase algorithm efficiency further and thus speed up the likelihood computations. We then applied the OE algorithm to synthetic data and observations from the moderate resolution imaging spectroradiometer (MODIS) on NASA's Aqua spacecraft. We compared the Rrs(λ) retrieval and its uncertainty estimates from the OE method with in-situ validation data from the SeaWiFS bio-optical archive and storage system (SeaBASS) and aerosol robotic network for ocean color (AERONET-OC) datasets. The OE algorithm improved Rrs(λ) estimates relative to the NASA standard operational algorithm by improving all statistical metrics at 443, 555, and 667 nm. Unphysical negative Rrs(λ), which often appears in complex water conditions, was reduced by a factor of 3. The OE-derived pixel-level Rrs(λ) uncertainty estimates were also assessed relative to in-situ data and were shown to have skill.

8.
J Clin Apher ; 37(1): 82-90, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34846767

RESUMO

OBJECTIVE: To investigate the effect of therapeutic plasma exchange (TPE) on lowering triglyceride (TG) levels in patients with hypertriglyceridemic pancreatitis (HLAP). METHODS: The TG-lowering in patients with HLAP was compared between the TPE group and conservative treatment group (non-TPE). The primary outcome was TG reduction to less than 500 mg/dL within 48 hours. RESULTS: The primary outcome was significantly correlated with TPE (univariate analysis odds ratio [OR] 2.74; 95% confidence interval [CI] 1.30-5.79, P = .008; multivariate analysis OR 3.03; 95% CI 1.28-7.19, P = .012). At 24 and 48 hours, conservative treatment resulted in a 48.24% and 70.44% reduction in TG, while TPE resulted in a 70.91% and 76.39% reduction in TG, respectively. A more rapid decrease of in TGs in a short period was clearly associated with TPE (P < .001 for interaction). After 72 hours, the TGs decreased by approximately 77% in both groups, with no significant difference (P = .563). There was no difference between groups in clinical outcomes over the acute time period or over the longer term. CONCLUSIONS: In patients with HLAP, TPE resulted in a short-term and rapid reduction in plasma TG concentrations, with no significant advantage over non-TPE after 72 hours.


Assuntos
Hipertrigliceridemia/sangue , Hipertrigliceridemia/complicações , Hipertrigliceridemia/terapia , Pancreatite/complicações , Troca Plasmática , Triglicerídeos/sangue , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Resultado do Tratamento
9.
BMC Gastroenterol ; 21(1): 3, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407166

RESUMO

BACKGROUND: What kind of patients with hypertriglyceridemic acute pancreatitis (HLAP) might benefit from plasmapheresis (PP) remains unknown. The objective of this study is to determine the predict function of total cholesterol (TC) on the Triglyceride (TG)-lowing effect in patients on either non-PP or PP therapy. METHODS: Patients were categorized into high total cholesterol (HTC)/low total cholesterol (LTC) groups based on TC level of 12.4 mmol/L. The primary outcome was TG reduction to below 500 mg/dL within 48 h. Linear mixed-effect model and logistic regression analyses were used to assess the association of TC level and TG-lowing efficacy in different therapy groups. RESULTS: Compared with LTC group, patients with HTC showed more severe imaging manifestations (p < 0.001) and higher APACH II scores (p = 0.036). Deaths occurred only in HTC groups. Significant interaction of time sequence with the 2 TGs-lowing therapy groups on TG level was only found in HTC group (p < 0.001). In patients with elevated TC level, primary outcome occurred in 66.67% of patients in the PP group, and 27.91% in the non-PP group. After adjustment for age, gender, CT grade and APACH II score, the odd ratio remain significant (OR 5.47, 95% confidence interval [CI] 1.84-16.25, p = 0.002). Furthermore, in patients with lower TC level, no significant difference was found in primary outcome between PP group and non-PP group (81.25% versus 62.30%, adjusted OR 2.05; 95% CI 0.45-9.40; p = 0.353). CONCLUSIONS: TC could be a potential biomarker to predict the effects of TG-lowing therapy in patients with HLAP.


Assuntos
Hipertrigliceridemia , Pancreatite , Doença Aguda , Estudos de Casos e Controles , Colesterol , Humanos , Hipertrigliceridemia/complicações , Hipertrigliceridemia/terapia , Pancreatite/terapia , Plasmaferese , Estudos Retrospectivos , Triglicerídeos
10.
Opt Express ; 27(13): 18620-18627, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31252802

RESUMO

A laboratory experiment was conducted to obtain a floating algae index (FAI) of the floating macroalgae (Ulva prolifera), corresponding to various values of biomass per unit area (BPA). A piecewise empirical model was used to fit the statistical relationships between BPA and FAI, corresponding to FAI ≤ 0.2 (BPA ≤ 1.81kg/m2) and FAI ˃ 0.2 (BPA ˃ 1.81 kg/m2). Spectral mixing derived results show that a linear relationship between FAI and BPA is maintained when the BPA of endmembers is less than 1.81 kg/m2. However, when the BPA of the endmembers exceeds 1.81 kg/m2, there is substantial uncertainty in the optical remote estimation of biomass. Although the MODIS-derived FAI of Ulva prolifera is often less than 0.2, it is very difficult to determine whether the FAI results from low BPA (≤ 1.81kg/m2) of the endmembers, or from a low area ratio including high BPA (˃ 1.81 kg/m2), due to pixel mixing. If it is assumed that the unit biomass distribution of pure endmembers is a standard Gaussian distribution, then the uncertainty in the biomass estimation of Ulva prolifera from MODIS data can be expressed. This results in the uncertainty of ~36% in total biomass estimation, ~43% of which was contributed by a few pixels (10% of total pixels) with high FAI (˃ 0.05). The uncertainty in BPA caused by high FAI (˃ 0.05) pixels is about 7.2 times that for low FAI (≤ 0.05) pixels. In future research, the spatial distribution characteristics of the FAI of pure endmembers need to be considered in order to improve the accuracy of optical remote estimation of floating Ulva prolifera.


Assuntos
Biomassa , Oceanos e Mares , Imagens de Satélites , Alga Marinha/crescimento & desenvolvimento , Ulva/crescimento & desenvolvimento , Incerteza , Simulação por Computador , Espalhamento de Radiação , Estatística como Assunto
11.
Opt Express ; 22(7): 7906-24, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718166

RESUMO

We have presented an atmospheric correction algorithm for HJ-1 CCD imagery over Lakes Taihu and Chaohu with highly turbid waters. The Rayleigh scattering radiance (Lr) is calculated using the hyperspectral Lr with a wavelength interval 1nm. The hyperspectral Lr is interpolated from Lr in the central wavelengths of MODIS bands, which are converted from the band response-averaged Lr calculated using the Rayleigh look up tables (LUTs) in SeaDAS6.1. The scattering radiance due to aerosol (La) is interpolated from La at MODIS band 869nm, which is derived from MODIS imagery using a shortwave infrared atmospheric correction scheme. The accuracy of the atmospheric correction algorithm is firstly evaluated by comparing the CCD measured remote sensing reflectance (Rrs) with MODIS measurements, which are validated by the in situ data. The CCD measured Rrs is further validated by the in situ data for a total of 30 observation stations within ± 1h time window of satellite overpass and field measurements. The validation shows the mean relative errors about 0.341, 0.259, 0.293 and 0.803 at blue, green, red and near infrared bands.

12.
Plants (Basel) ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38931097

RESUMO

With the internationalization of Chinese culture, ready-to-cook Chinese food has become popular. Vegetables in Chinese preparations are usually cut into slices, cubes, and shreds. Carrots, as a typical Chinese side dish, were selected as the model in this work. The polyphenol content, antioxidant capacity, O2-, hydrogen peroxide, malondialdehyde, lignin, antioxidant enzymes, and other enzymes activities were analyzed. The results indicated that these parameters were insignificantly different between three cutting styles. Therefore, metabolomics is further employed. Pathway enrichment indicated that glyceollin II and 6″-malonylgenistin were metabolites particularly expressed in the isoflavonoid biosynthesis pathway; (+)-gallocatechin, trans-chlorogenic acid, and (-)-epiafzelechin were specifically identified in the flavonoid biosynthesis pathway after slicing; and shredding caused the expression of coniferyl aldehyde and eugenol, which were specifically expressed in the phenylpropanoid biosynthesis pathway. These results indicate that different cutting styles do not change the physiological indicators of carrots but induce the expression of specific metabolites.

13.
Ultrason Sonochem ; 102: 106739, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38154207

RESUMO

In this study, we explored the use of plasma-activated water (PAW) in combination with ultrasound (US) for food disinfection. Our research introduces a novel approach that utilizes a pulsed-control (PC) method to modify the PAW. The resulting PCPAW exhibits significantly higher concentrations of key reactive oxygen and nitrogen species (RONS) compared to conventional PAW. The disinfection efficacy of US-PCPAW against fresh-cut lettuce was compared to that of US-PAW, US, and PCPAW. The combination of US and PCPAW was highly effective in reducing food-borne pathogens, surpassing single treatments in count reduction and minimizing cross-contamination. Furthermore, our study demonstrates that US-PCPAW effectively controls browning appearance without compromising sensory attributes. These findings suggest that PCPAW, as a novel disinfectant, can be a valuable addition to US to enhance the quality and safety of fresh-cut produce.


Assuntos
Escherichia coli O157 , Água , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Contagem de Colônia Microbiana , Tecnologia
14.
Front Bioeng Biotechnol ; 12: 1338408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440327

RESUMO

For individuals with celiac disease (CD), the current clinical therapy option available is a lifelong gluten-free diet. Therefore, it is essential to swiftly and efficiently detect gluten in foods. A colorimetric sensor has been developed, which operates by regulating the aggregation and dispersion state of AuNPs induced by high concentration NaCl through the specific binding of gliadin and aptamer, thereby achieving rapid detection of gliadin in flour. It is found that the sensor exhibits good linearity in the concentration range of 0.67-10 µM and the LOD (3σ/S) is 12 nM. And it can accurately distinguish various types of free-gliadin samples, with a spiked recovery rate of 85%-122.3%. To make the detection process more convenient, the colorimetric results of the biosensor were translated into RGB color-gamut parameters by a smartphone color-picking program for further analysis. Gliadin can still be accurately quantified with the established smartphone platform, and a correlation coefficient of 0.988 was found. The proposed portable smartphone aptamer colorimetric sensing device has achieved satisfactory results in the rapid detection of gliadin in food.

15.
PLoS One ; 19(3): e0296803, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427632

RESUMO

Existing research of non-unidirectional cleanrooms generally suggests that lower-side return air outlets provide better control effect on indoor particle concentration. As a result, there has been relatively less focus on return air outlets. However, installing return air outlets oriented towards operators as particle emission sources can reduce the impact on process layout and improve space utilization, while also provide less impact from upper particle emission sources on the workbench area. To investigate the characteristics of return air outlet for operators (abbreviated as H), this study compared the particle concentration distribution, non-uniformity, and purification efficiency of return air oultet H and the traditional lower-side (abbreviated as L) return air outlets by experiments and CFD simulations. Based on the theory of mass conservation, the expression of required air supply volume under equivalent cleanroom conditions was derived. Under corresponding experimental and simulation conditions, the particle concentration differences range from 2.0% to 12.7% for return air outlet H and from 12.4% to 33.2% for return air outlet L, and these differences gradually decrease with the air exchange rate (ACH) increases. The results show that ACH = 20 is sufficient for cleanliness requirements with return air outlet H when there is one person in the cleanroom, while a higher rate of ACH = 35 is needed when there are two persons. Although lower-side return air outlets have certain potential for reducing particle concentration in the cleanroom, increasing the air exchange rate remains the most effective method to control indoor particle concentration. Compared to the traditional lower-side return air outlet L, the ranges of the non-uniformity coefficients for return air outlet H and L are 0.50 to 0.67 and 0.45 to 0.53, respectively. The average non-uniformity coefficient differs by 11.9%, and there is not a significant difference in uniformity with more than 20 air changes per hour. The use of return air outlets H only requires an additional 11% of air supply volume to achieve the same cleanliness, demonstrating its effectiveness in controlling particle concentration. It is suitable for cleanrooms with higher requirements for workbenches and for cleanrooms with restricted floor usage or requiring flexible layouts. The study also explores the impact of width of return air outlet oriented towards operators as particle emission sources, the results show that the larger-sized outlets facilitate the particle discharge and control the particle distribution inside the room.


Assuntos
Líquidos Corporais , Fenômenos Fisiológicos Respiratórios , Humanos , Simulação por Computador , Alta do Paciente , Tamanho da Partícula
16.
Food Chem X ; 22: 101281, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38544935

RESUMO

In this study, a rapid, inexpensive, and accurate colorimetric sensor for detecting psychrophilic bacteria was designed, comprising gold (Au) nanoparticles (NPs) modified by d-amino acid (D-AA) as color-metric probes. Based on the aggregation of Au NPs induced by psychrophilic bacteria, a noticeable color shift occurred within 6 h. Depending on the various metabolic behaviors of bacteria to different D-AA, four primary psychrophilic bacteria in raw milk were successfully distinguished by learning the response patterns. Furthermore, the quantification of single bacteria and the practical application in milk samples could be realized. Notably, a rapid colorimetric method was constructed by combining Au/D-AA with antibiotics for the minimum inhibitory concentration of psychrophilic bacteria, which relied on differences in bacteria metabolic activity in response to diverse antibiotic treatments. Therefore, the method enables the rapid detection and susceptibility evaluation of psychrophilic bacteria, promoting clinical practicability and antibiotic management.

17.
Food Chem ; 463(Pt 1): 141139, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39243615

RESUMO

A high-stability konjac glucomannan-functionalized gold nanoparticles (KGM-Au NPs) were successfully synthesized via a one-step hydrothermal method. The Au (III) ion was employed as Lewis acid which could induce exposure to the highly reducing aldehyde or ketone groups of KGM to prepare Au NPs. The KGM-Au NPs exhibited excellent stability with strong acids and excess ion concentrations, owing to the oxidation products of aldehyde or ketone groups in KGM. Moreover, KGM could act as reducing agent to reduce Hg2+ to Hg0, which could trigger the oxidase-like activity of KGM-Au NPs. Based on this, TMB will be oxidized to TMBox with blue color and excellent photothermal properties. A dual-signal sensor was constructed with the Hg2+ concentration range of 70-2025 nmolL-1, which can reach a low LOD of 57.14 (11.43 ppb) and 45.20 nmolL-1 (9.04 ppb), respectively. Besides, the sensor exhibits excellent selectivity and good recoveries of Hg2+ detection in lettuce samples (85.81-97.84 %).

18.
Food Chem X ; 23: 101630, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39108625

RESUMO

Chickpea (Cicer arietinum L.) is a significant dietary source of flavonoids and the hypoglycemic activity were investigated in this study. Firstly, total twenty nine chickpea flavonoids were identified by UPLC-MS/MS with ononin, cyanidin-3-O-glucoside, astragalin, cynaroside, kaempferol-3-O-rutinoside, biochanin A, and daidzin being the most abundant among them. Our results demonstrated that chickpea flavonoids regulated glucose metabolism and lipid metabolism, and reduced oxidative stress in insulin resistance HepG2 cells. Furthermore, insulin resistance was ameliorated by chickpea flavonoids through the activation of insulin receptor substrate1 (IRS1), phosphoinositide 3-kinase (PI3K), and phosphorylated protein kinase B (Akt) in HepG2 cells. More importantly, key differential metabolites include L-tryptophan, L-tyrosine, l-glutamine and linoleic acid were reserved by chickpea flavonoids and correlated with glucolipid metabolism and oxidative stress in IR-HepG2 cells. In conclusion, these results indicated that chickpea flavonoids might act as potential natural products regulating insulin resistance in HepG2 cells.

19.
Front Bioeng Biotechnol ; 12: 1444846, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39157440

RESUMO

Excessive residue of metronidazole (MNZ) in food is harmful to the human body. There is an urgent demand to develop a portable tool for MNZ detection on-site. In this study, fifteen aptamers were prepared through targeted base mutation. Apt1-3 with the highest enrichment was chosen for further study. Its affinity was characterized by molecular docking simulation, AuNPs colorimetric assay, graphene oxide (GO) fluorescence assay, and exonuclease assay. Kd was determined by GO fluorescence assay (Kd: 92.60 ± 25.59 nM). Its specificity was also characterized by an exonuclease assay. A novel aptasensor was constructed by using the newly identified aptamer combined with the smartphone dark box. The principle of color change is caused by the aggregation state of AuNPs. Smartphones act as reading instruments. The detection can be completed in just a few seconds without the aid of instruments, achieving a detection limit of 0.15 nmol/mL and a range of 6.7-44.4 nmol/mL (R 2 = 0.9810). Therefore, the constructed smartphone colorimetric sensor based on mutant aptamers has important applications in food detection.

20.
Int J Biol Macromol ; 265(Pt 2): 130824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492708

RESUMO

Polysaccharide-functionalized gold nanoparticles (Polysaccharide-Au NPs) with high stability were successfully prepared by a straightforward method. Notably, the Au (III) ion acts as a strong Lewis acid to facilitate glycosidic bond breaking. Subsequently, the polysaccharide conformation was transformed to an open-chain form, exposing highly reduced aldehyde or ketone groups that reduce Au (III) to Au (0) crystal species, further growing into Au NPs. As-prepared Au NPs displayed excellent stability over a longer storage period (more than 70 days), a wide range of temperatures (25-60 °C), and pH range (3-11), varying concentrations (0-200 mM) and types of salt ions (Na+, K+, Ca2+, Mg2+), and glutathione solutions (5 mM). More interestingly, polysaccharide-Au NPs retained the antioxidant activity of polysaccharides and reduced oxidative damage at the cellular level through decreased reactive oxygen species (ROS) production. The intracellular levels of ROS pretreated with polysaccharide and polysaccharide-Au NPs were decreased 53.12-75.85 % compared to the H2O2 group, respectively. Therefore, the green synthesized Au NPs from natural active polysaccharides exhibit potential applications in biomedical fields.


Assuntos
Antioxidantes , Nanopartículas Metálicas , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Ouro/química , Nanopartículas Metálicas/química , Polissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa