Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Crit Rev Food Sci Nutr ; 63(30): 10585-10606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35603719

RESUMO

Plant-based food products have been receiving an astronomical amount of attention recently, and their demand will most likely soar in the future. However, their unpleasant, intrinsic flavor and odor are the major obstacles limiting consumer's acceptance. These off-flavors are often described as "green," "grassy," "beany," "fatty" and "bitter." This review highlights the presence and formation of common off-flavor volatiles (aldehydes, alcohols, ketones, pyrazines, furans) and nonvolatiles (phenolics, saponins, peptides, alkaloids) from a variety of plant-based foods, including legumes (e.g. lentil, soy, pea), fruits (e.g. apple, grape, watermelon) and vegetables (e.g. carrot, potato, radish). These compounds are formed through various pathways, including lipid oxidation, ethanol fermentation and Maillard reaction (and Strecker degradation). The effect of off-flavor compounds as received by the human taste receptors, along with its possible link of bioactivity (e.g. anti-inflammatory effect), are briefly discussed on a molecular level. Generation of off-flavor compounds in plants is markedly affected by the species, cultivar, geographical location, climate conditions, farming and harvest practices. The effects of genome editing (i.e. CRISPR-Cas9), various processing technologies, such as antioxidant supplementation, enzyme treatment, extrusion, fermentation, pressure application, and different storage and packaging conditions, have been increasingly studied in recent years to mitigate the formation of off-flavors in plant foods. The information presented in this review could be useful for agricultural practitioners, fruits and vegetables industry, and meat and dairy analogue manufacturers to improve the flavor properties of plant-based foods.


Assuntos
Reação de Maillard , Paladar , Humanos , Antioxidantes , Manipulação de Alimentos , Verduras
2.
Crit Rev Food Sci Nutr ; : 1-26, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36927343

RESUMO

Anthocyanins are a subclass of flavonoids responsible for color in some fruits and vegetables with potent antioxidative capacity. During digestion, a larger proportion of dietary anthocyanins remains unabsorbed and reach the large intestine where they interact with the gut microbiota. Anthocyanins can modulate gut microbial populations to improve diversity and the proportion of beneficial populations, leading to alterations in short chain fatty acid and bile acid production. Some anthocyanins can be degraded into colonic metabolites, such as phenolic acids, which accumulate in the body and regulate a range of biological activities. Here we provide an overview of the effects of dietary anthocyanin consumption on gut microbial interactions, metabolism, and composition. Progression of chronic diseases has been strongly associated with imbalances in gut microbial populations. We therefore focus on the role of the gut microbiota as the 'mediator' that facilitates the therapeutic potential of anthocyanins against various chronic diseases, including obesity, type II diabetes, cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, cancer, fatty liver disease, chronic kidney disease and osteoarthritis.

3.
Int J Food Sci Nutr ; 74(2): 219-233, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36915255

RESUMO

We investigated the effects of (poly)phenol-rich sugarcane extract (PRSE), sugarcane fibre (SCFiber), and the combination of them (PRSE + SCFiber) on the gut microbiota and short-chain fatty acids (SCFA) production using in vitro digestion and pig faecal fermentation. Measuring total phenolic content and antioxidant activity through the in vitro digestion stages showed that PRSE + SCFiber increased the delivery of (poly)phenols to the in vitro colonic fermentation stage compared to PRSE alone. The PRSE + SCFiber modulated the faecal microbiota profile by enhancing the relative abundances of Prevotella, Lactobacillus, and Blautia, and reducing the relative abundance of Streptococcus. PRSE + SCFiber also mitigated the inhibitory effects of PRSE on SCFA production. These results suggest that the inclusion of sugarcane fibre with PRSE could increase the availability of phenolic compounds in the colon and modulate the gut microbiota towards a more favourable profile.


Assuntos
Fibras na Dieta , Fezes , Microbioma Gastrointestinal , Saccharum , Animais , Fibras na Dieta/administração & dosagem , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Digestão , Grão Comestível/química , Ácidos Graxos Voláteis/biossíntese , Fezes/química , Fezes/microbiologia , Fermentação , Suínos , Polifenóis/farmacologia , Extratos Vegetais/farmacologia , Microbioma Gastrointestinal/fisiologia
4.
Crit Rev Food Sci Nutr ; 62(6): 1608-1625, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33206548

RESUMO

Tyramine-derived hydroxycinnamic acid amines (HCAAT) are naturally occurring group of secondary metabolites present in various plant genera, such as Allium, Cannabis, Lycium, Polyganotum and Solanum. It belongs to the neutral, water-insoluble compounds and plays a role in plant growth, development and defence mechanism. The past two decades have seen a shift in the study of HCAAT from its role in plants to its potent biological activities. This review highlights the sources, roles in plants, biosynthetic pathways, metabolic engineering and chemical synthesis of HCAAT. The biological properties of HCAAT remain the focus in this paper, including antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-melanogenesis and neuroprotective properties. The effects of food processing and technology on HCAAT are also discussed. Given the current research gap, this review proposes future directions on the study of HCAAT, as well as its potential applications in food and pharmaceutical industry.


Assuntos
Ácidos Cumáricos , Tiramina , Amidas , Anti-Inflamatórios , Indústria Alimentícia
5.
Crit Rev Food Sci Nutr ; 62(5): 1284-1307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33124893

RESUMO

Fruit peel is an agricultural by-product and potential source to extract natural aroma compounds with low cost. In the past few decades, the extraction of plant aroma volatiles experienced a transition from traditional to modern technologies. This review summarizes the main aroma compounds in different fruit peels, evaluates modern extraction techniques applicable for these aroma compounds in terms of mechanism, procedure, merits and demerits, and practice. Additionally, the applications of fruit peel aroma extract in food, pharmaceutical and cosmetic industries are also discussed. This review provides comprehensive information for extraction and application of aroma compounds from fruit peels, which could facilitate the valorization of the agricultural by-products and reduce environmental impacts.


Assuntos
Frutas , Compostos Orgânicos Voláteis , Odorantes
6.
Crit Rev Food Sci Nutr ; 62(9): 2404-2431, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33938780

RESUMO

Increased consumer awareness of health and wellness has promoted a high demand for foods and beverages with functional and therapeutic properties. Cereals, apart from being important staple crops and primary sources of energy and nutrition, are replete with bioactive phytochemicals with health properties. Cereal grains contain a diverse range of bioactive phytochemicals including phenolic compounds, dietary fibers, carotenoids, tocols, phytosterols, γ-oryzanol, and phytic acid and therefore have great potential for processing into functional beverages. Although there are a variety of cereal grain-based beverages produced world-wide, very little scientific and technological attention has been paid to them. In this review, we have discussed cereal grain-based functional beverages based on 3 main categories: cereal grain-based milk alternatives, roasted cereal grain teas, fermented nonalcoholic cereal grain beverages. The processing techniques, health properties and product features of these beverages are elaborated, and the challenges and future perspectives are proposed. As the food market becomes increasingly diverse, cereal grain-based beverages could be a promising new category of health functional beverages in our daily life.


Assuntos
Grão Comestível , Compostos Fitoquímicos , Bebidas , Fibras na Dieta/análise , Grão Comestível/química , Fenóis/análise , Compostos Fitoquímicos/análise
7.
Crit Rev Food Sci Nutr ; 62(1): 215-243, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-32880480

RESUMO

Fruit aroma is mainly contributed by free and glycosidically bound aroma compounds, in which glycosidically bound form can be converted into free form during storage and processing, thereby enhancing the overall aroma property. In recent years, the bound aroma precursors have been widely used as flavor additives in the food industry to enhance, balance and recover the flavor of products. This review summarizes the fruit-derived aroma glycosides in different aspects including chemical structures, enzymatic hydrolysis, biosynthesis and occurrence. Aroma glycosides structurally involve an aroma compound (aglycone) and a sugar moiety (glycone). They can be hydrolyzed to release free volatiles by endo- and/or exo-glucosidase, while their biosynthesis refers to glycosylation process using glycosyltransferases (GTs). So far, aroma glycosides have been found and studied in multiple fruits such as grapes, mangoes, lychees and so on. Additionally, their importance in flavor perception, their utilization in food flavor enhancement and other industrial applications are also discussed. Aroma glycosides can enhance flavor perception via hydrolyzation by ß-glucosidase in human saliva. Moreover, they are able to impart product flavor by controlling the liberation of active volatiles in industrial applications. This review provides fundamental information for the future investigation on the fruit-derived aroma glycosides.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Aromatizantes , Frutas , Glicosídeos , Humanos , Odorantes/análise , Paladar
8.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163557

RESUMO

Betel quid (BQ) is a package of mixed constituents that is chewed by more than 600 million people worldwide, particularly in Asia. The formulation of BQ depends on a variety of factors but typically includes areca nut, betel leaf, and slaked lime and may or may not contain tobacco. BQ chewing is strongly associated with the development of potentially malignant and malignant diseases of the mouth such as oral submucous fibrosis (OSMF) and oral squamous cell carcinoma (OSCC), respectively. We have shown recently that the constituents of BQ vary geographically and that the capacity to induce disease reflects the distinct chemical composition of the BQ. In this review, we examined the diverse chemical constituents of BQ and their putative role in oral carcinogenesis. Four major areca alkaloids-arecoline, arecaidine, guvacoline and guvacine-together with the polyphenols, were identified as being potentially involved in oral carcinogenesis. Further, we propose that fibroblast senescence, which is induced by certain BQ components, may be a key driver of tumour progression in OSMF and OSCC. Our study emphasizes that the characterization of the detrimental or protective effects of specific BQ ingredients may facilitate the development of targeted BQ formulations to prevent and/or treat potentially malignant oral disorders and oral cancer in BQ users.


Assuntos
Areca/química , Carcinoma de Células Escamosas/induzido quimicamente , Neoplasias Bucais/induzido quimicamente , Fibrose Oral Submucosa/induzido quimicamente , Extratos Vegetais/efeitos adversos , Arecolina/efeitos adversos , Arecolina/análogos & derivados , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Humanos , Neoplasias Bucais/patologia , Ácidos Nicotínicos/efeitos adversos , Fibrose Oral Submucosa/patologia
9.
Crit Rev Food Sci Nutr ; 61(8): 1404-1414, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32366112

RESUMO

Lignanamides are natural plant secondary metabolites derived from oxidative coupling mechanism with hydroxycinnamic acid amides as intermediates. These compounds display powerful anti-inflammatory, antioxidant, anti-cancer and anti-hyperlipidemic capacities in vitro, cell culture and in vivo studies. With strong potential to be utilized as protective agents against human chronic diseases, these compounds have attracted the interest of researchers. This review aims to discuss current understanding on the sources, classification, biosynthesis of lignanamides in plants, and importantly their biological activity and potential health benefits. The general biosynthesis pathway for lignanamides is comprehensively summarized, though some details in molecular regulation of the coupling process have yet to be elucidated. Lignanamides deserves additional clinical studies involving animal and human subjects, to prove its health benefits.


Assuntos
Anti-Inflamatórios , Antioxidantes , Amidas , Animais , Ácidos Cumáricos , Humanos
10.
Crit Rev Food Sci Nutr ; 61(12): 2061-2077, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32462901

RESUMO

In recent years, obesity has become a global public health issue. It is closely associated with the occurrence of several chronic diseases, such as diabetes and cardiovascular diseases. Some edible and medicinal plants show anti-obesity activity, such as fruits, vegetables, spices, legumes, edible flowers, mushrooms, and medicinal plants. Numerous studies have indicated that these plants are potential candidates for the prevention and management of obesity. The major anti-obesity mechanisms of plants include suppressing appetite, reducing the absorption of lipids and carbohydrates, inhibiting adipogenesis and lipogenesis, regulating lipid metabolism, increasing energy expenditure, regulating gut microbiota, and improving obesity-related inflammation. In this review, the anti-obesity activity of edible and medicinal plants was summarized based on epidemiological, experimental, and clinical studies, with related mechanisms discussed, which provided the basis for the research and development of slimming products. Further studies should focus on the exploration of safer plants with anti-obesity activity and the identification of specific anti-obesity mechanisms.


Assuntos
Fármacos Antiobesidade , Plantas Medicinais , Metabolismo Energético , Humanos , Metabolismo dos Lipídeos , Obesidade/tratamento farmacológico , Obesidade/prevenção & controle , Plantas Comestíveis
11.
J Nat Prod ; 84(4): 956-963, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33787264

RESUMO

Phenylalkenoic acid amides, often referred to as phenol amides or hydroxycinnamic acid amides, are bioactive phytochemicals, whose bioactivity can be enhanced by coupling to form dimers or oligomers. Phenylalkenoic acid amides consist of a (hydroxy)cinnamic acid derivative (i.e., the phenylalkenoic acid subunit) linked to an amine-containing compound (i.e., the amine subunit) via an amide bond. The phenylalkenoic acid moiety can undergo oxidative coupling, either catalyzed by oxidative enzymes or due to autoxidation, which leads to the formation of (neo)lignanamides. Dimers described in the literature are often named after the species in which the compound was first discovered; however, the naming of these compounds lacks a systematic approach. We propose a new nomenclature, inspired by the existing system used for hydroxycinnamic acid dimers and lignin. In the proposed systematic nomenclature for (neo)lignanamides, compound names will be composed of three-letter codes and prefixes denoting the subunits, and numbers that indicate the carbon atoms involved in the linkage between the monomeric precursors. The proposed nomenclature is consistent, future-proof, and systematic.


Assuntos
Amidas/química , Terminologia como Assunto , Amidas/classificação , Ácidos Cumáricos , Estrutura Molecular , Fenóis
12.
Food Microbiol ; 100: 103859, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34416959

RESUMO

Beta-glucosidase is an important enzyme for the hydrolysis of grape glycosides in the course of winemaking. Yeasts are the main producers of ß-glucosidase in winemaking, therefore play an important role in determining wine aroma and flavour. This article discusses common methods for ß-glucosidase evaluation, the ß-glucosidase activity of different Saccharomyces and non- Saccharomyces yeasts and the influences of winemaking conditions, such as glucose and ethanol concentration, low pH environment, fermentation temperature and SO2 level, on their activity. This review further highlights the roles of ß-glucosidase in promoting the release of free volatile compounds especially terpenes and the modification of wine phenolic composition during the winemaking process. Furthermore, this review proposes future research direction in this area and guides wine professionals in yeast selection to improve wine quality.


Assuntos
Proteínas Fúngicas/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Vinho/análise , Leveduras/enzimologia , beta-Glucosidase/metabolismo , Proteínas Fúngicas/genética , Odorantes/análise , Fenóis/química , Fenóis/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vitis/química , Vitis/microbiologia , Compostos Orgânicos Voláteis/química , Vinho/microbiologia , Leveduras/genética , Leveduras/metabolismo , beta-Glucosidase/genética
13.
Compr Rev Food Sci Food Saf ; 20(1): 710-737, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33443803

RESUMO

Hydroxycinnamic acids (HCAs) are a major class of phenolic acids with the characteristic phenylpropanoid C6 -C3 backbone. Its typically conjugated status with plant cell wall components and liberation by limited enzymes might be the reason for its neglect by researchers compared to flavonoid-type polyphenols. The polyphenol-gut microbiota interactions and their impact on human health have captured the interest of researchers recently. In addition, there has been a significant progress over the past few years in understanding the gut microbiota-modulating effect of HCA using animal model studies. This review discusses the metabolism of HCA in the digestive tract, HCA-gut microbiota interactions, and its link to colorectal cancer, inflammatory bowel diseases, mental-cognitive impairments, nonalcoholic liver disease, and obesity. The effects of food matrix and processing technologies on HCA bioavailability and HCA-gut microbiota interactions, and HCA safety concerns are also featured in this review. This paper has provided an in-depth insight on HCA-gut microbiota relationship and identified the current literature gaps for future research.


Assuntos
Microbioma Gastrointestinal , Animais , Ácidos Cumáricos , Flavonoides , Trato Gastrointestinal , Humanos , Polifenóis
14.
Compr Rev Food Sci Food Saf ; 20(2): 1150-1187, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33527706

RESUMO

Angiotensin-I-converting enzyme (ACE) inhibitory peptides are able to inhibit the activity of ACE, which is the key enzymatic factor mediating systemic hypertension. ACE-inhibitory peptides can be obtained from edible proteins and have the function of antihypertension. The amino acid sequences and the secondary structures of ACE-inhibitory peptides determine the inhibitory activities and stability. The resistance of ACE-inhibitory peptides to digestive enzymes and peptidase affect their antihypertensive bioactivity in vivo. In this paper, the mechanism of ACE-inhibition, sources of the inhibitory peptides, structure-activity relationships, stability during digestion, absorption and transportation of ACE-inhibitory peptides, and consumption of ACE-inhibitory peptides are reviewed, which provide guidance to the development of new functional foods and production of antihypertensive nutraceuticals and pharmaceuticals.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Peptidil Dipeptidase A , Angiotensinas , Disponibilidade Biológica , Peptídeos , Peptidil Dipeptidase A/metabolismo
15.
Compr Rev Food Sci Food Saf ; 20(4): 3579-3619, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34146455

RESUMO

Grape phenolic compounds undergo various types of transformations during winemaking under the influences of yeasts, which further impacts the sensory attributes, thus the quality of wine. Understanding the roles of yeasts in phenolics transformation is important for controlling wine quality through fermentation culture selection. This literature review discusses the mechanisms of how yeasts alter the phenolic compounds during winemaking, summarizes the effects of Saccharomyces cerevisiae and non-Saccharomyces yeasts on the content and composition of phenolics in wine, and highlights the influences of mixed cultural fermentation on the phenolic profile of wine. Collectively, this paper aims to provide a deeper understanding on yeast-phenolics interactions and to identify the current literature gaps for future research.


Assuntos
Vitis , Vinho , Fermentação , Fenóis/análise , Saccharomyces cerevisiae , Vinho/análise
16.
J Sci Food Agric ; 100(3): 978-985, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31617213

RESUMO

BACKGROUND: Sorghum grain is rich in phenolic compounds and has the potential to be developed into functional beverages such as sorghum grain tea, in which the health benefits and flavour are the important quality attributes to be considered in tea product development. Therefore, this study investigated the effect of grain tea processing steps on the phenolic contents, antioxidant activity and aroma profile (volatile compounds) of MR-Buster (red-coloured) and Shawaya Short Black 1 (black-coloured) sorghum and the results compared with those for our previously reported Liberty (white-coloured) sorghum. RESULTS: Tea processing had significant impacts on sorghum polyphenols and volatile compounds, but the effect and level varied among sorghum varieties. The phenolic contents and antioxidant activity in these three sorghum varieties were consistent in both raw grain and grain tea samples and in the order Shawaya Short Black 1 > MR-Buster > Liberty. However, the volatile profiles (both individual and grouped volatiles) were significantly different between sorghum varieties, and the abundance and diversity of the volatile compounds of the tea samples were in the order Liberty > MR-Buster > Shawaya Short Black 1. CONCLUSIONS: Black-coloured sorghum with high phenolic content and antioxidant activity is more suitable for making sorghum tea considering the health benefits. In terms of the aroma intensity and diversity, white-coloured sorghum could be the ideal material. However, future study is needed to determine the key volatile compounds that positively contribute to the aroma. This work provides important insights into the selection of grain materials for sorghum grain tea production. © 2019 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Bebidas/análise , Fenóis/química , Extratos Vegetais/química , Sorghum/química , Compostos Orgânicos Voláteis/química , Manipulação de Alimentos , Sorghum/classificação
17.
Compr Rev Food Sci Food Saf ; 19(4): 1268-1298, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337077

RESUMO

The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long-term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long-term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short-term consumption of solely animal- or plant-based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food-derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber-rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.


Assuntos
Bactérias/metabolismo , Fibras na Dieta , Microbioma Gastrointestinal/fisiologia , Fenóis/química , Animais , Bactérias/classificação , Humanos
18.
Compr Rev Food Sci Food Saf ; 19(1): 218-246, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319515

RESUMO

The food processing industry generates an immense amount of waste, which leads to major concerns for its environmental impact. However, most of these wastes, such as plant-derived byproducts, are still nutritionally adequate for use in food manufacturing. Extrusion is one of the most versatile and commercially successful processing technologies, with its widespread applications in the production of pasta, snacks, crackers, and meat analogues. It allows a high degree of user control over the processing parameters that significantly alters the quality of final products. This review features the past research on manufacture of extruded foods with integration of various plant food processing byproducts. The impact of extrusion parameters and adding various byproducts on the nutritional, physicochemical, sensory, and microbiological properties of food products are comprehensively discussed. This paper also provides fundamental knowledge and practical techniques for food manufacturers and researchers on the extrusion processing of plant food byproducts, which may increase economical return to the industry and reduce the environmental impact.


Assuntos
Manipulação de Alimentos/métodos , Tecnologia de Alimentos , Valor Nutritivo , Plantas
19.
Compr Rev Food Sci Food Saf ; 19(1): 282-308, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319519

RESUMO

Hemp (Cannabis sativa L.) seeds have been consumed in Asian communities since prehistoric times. Recently, Australia, Canada, and the United States have legalized the cultivation and consumption of hempseed at low (<0.3%) tetrahydrocannabinol levels, and there's a growing interest in hempseed due to its nutritional value and pharmaceutical potential. This review aims to summarize the chemical composition, nutritional value, and potential health benefits of hempseed, as researched via in vitro and in vivo trials. The application of hempseed in the food industry is limited due to its poor performance on some functional properties, so the latest processing methods developed to improve these properties were compared. Additionally, manufacturing technologies incorporating hemp seeds into existing food products are also elaborated. This review would promote further in-depth research on this recently approved food resources and maximize its utilization in new food product development.


Assuntos
Cannabis/química , Valor Nutritivo , Sementes/química , Animais , Manipulação de Alimentos/métodos , Humanos , Óleos de Plantas/química , Proteínas de Plantas/química
20.
Compr Rev Food Sci Food Saf ; 19(1): 247-281, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319521

RESUMO

Grapes are an important global horticultural product, and are mainly used for winemaking. Typically, grapes and wines are rich in various phytochemicals, including phenolics, terpenes, pyrazines, and benzenoids, with different compounds responsible for different nutritional and sensory properties. Among these compounds, sesquiterpenes, a subcategory of the terpenes, are attracting increasing interest as they affect aroma and have potential health benefits. The characteristics of sesquiterpenes in grapes and wines in terms of classification, biosynthesis pathway, and active functions have not been extensively reviewed. This paper summarizes 97 different sesquiterpenes reported in grapes and wines and reviews their biosynthesis pathways and relevant bio-regulation mechanisms. This review further discusses the functionalities of these sesquiterpenes including their aroma contribution to grapes and wines and potential health benefits, as well as how winemaking processes affect sesquiterpene concentrations.


Assuntos
Sesquiterpenos/química , Vitis/química , Vinho/análise , Fermentação , Frutas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa