Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Cell ; 174(6): 1465-1476.e13, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30122350

RESUMO

Cell-penetrating peptides (CPPs) are short protein segments that can transport cargos into cells. Although CPPs are widely studied as potential drug delivery tools, their role in normal cell physiology is poorly understood. Early during infection, the L2 capsid protein of human papillomaviruses binds retromer, a cytoplasmic trafficking factor required for delivery of the incoming non-enveloped virus into the retrograde transport pathway. Here, we show that the C terminus of HPV L2 proteins contains a conserved cationic CPP that drives passage of a segment of the L2 protein through the endosomal membrane into the cytoplasm, where it binds retromer, thereby sorting the virus into the retrograde pathway for transport to the trans-Golgi network. These experiments define the cell-autonomous biological role of a CPP in its natural context and reveal how a luminal viral protein engages an essential cytoplasmic entry factor.


Assuntos
Proteínas do Capsídeo/metabolismo , Peptídeos Penetradores de Células/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Endossomos/metabolismo , Complexo de Golgi/virologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiologia , Humanos , Mutagênese , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/genética , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Ligação Viral , Internalização do Vírus
2.
Opt Express ; 32(2): 1438-1450, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297695

RESUMO

Edge enhancement, as an important part of image processing, has played an essential role in amplitude-contrast and phase-contrast object imaging. The edge enhancement of three-dimensional (3D) vortex imaging has been successfully implemented by Fresnel incoherent correlation holography (FINCH), but the background noise and image contrast effects are still not satisfactory. To solve these issues, the edge enhancement of FINCH by employing Bessel-like spiral phase modulation is proposed and demonstrated. Compared with the conventional spiral phase modulated FINCH, the proposed technique can achieve high-quality edge enhancement 3D vortex imaging with lower background noise, higher contrast and resolution. The significantly improved imaging quality is mainly attributed to the effective sidelobes' suppression in the generated optical vortices with the Bessel-like modulation technique. Experimental results of the small circular aperture, resolution target, and the Drosophila melanogaster verify its excellent imaging performance. Moreover, we also proposed a new method for selective edge enhancement of 3D vortex imaging by breaking the symmetry of the spiral phase in the algorithmic model of isotropic edge enhancement. The reconstructed images of the circular aperture show that the proposed method is able to enhance the edges of the given objects selectively in any desired direction.

3.
Toxicol Appl Pharmacol ; 483: 116839, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38290667

RESUMO

Actin filaments form unique structures with robust actin bundles and cytoskeletal networks affixed to the extracellular matrix and interact with neighboring cells, which are crucial structures for cancer cells to acquire a motile phenotype. This study aims to investigate a novel antitumor mechanism by which Tanshinone IIA (Tan IIA) modulates the morphology and migration of liver cancer cells via actin cytoskeleton regulation. 97H and Huh7 exhibited numerous tentacle-like protrusions that interacted with neighboring cells. Following treatment with Tan IIA, 97H and Huh7 showed a complete absence of cytoplasmic protrusion and adherens junctions, thereby effectively impeding their migration capability. The fluorescence staining of F-actin and microtubules indicated that these tentacle-like protrusions and cell-cell networks were actin-based structures that led to morphological changes after Tan IIA treatment by retracting and reorganizing beneath the membrane. Tan IIA can reverse the actin depolymerization and cell morphology alterations induced by latrunculin A. Tan IIA down-regulated actin and Rho GTPases expression significantly, as opposed to inducing Rho signaling activation. Preventing the activity of proteasomes and lysosomes had no discernible impact on the modifications in cellular structure and protein expression induced by Tan IIA. However, as demonstrated by the puromycin labeling technique, the newly synthesized proteins were significantly inhibited by Tan IIA. In conclusion, Tan IIA can induce dramatic actin cytoskeleton remodeling by inhibiting the protein synthesis of actin and Rho GTPases, resulting in the suppression of tumor growth and migration. Targeting the actin cytoskeleton of Tan IIA is a promising strategy for HCC treatment.


Assuntos
Abietanos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Actinas , Proteínas rho de Ligação ao GTP/farmacologia , Proliferação de Células , Carcinoma Hepatocelular/tratamento farmacológico , Citoesqueleto , Citoesqueleto de Actina , Linhagem Celular Tumoral , Apoptose
4.
Opt Lett ; 49(12): 3396-3399, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875629

RESUMO

We proposed a three-dimensional (3D) ranging system based on Fresnel incoherent correlation holography (FINCH). Distinct from the displacement measurement based on coherent digital holography (DH), our system simultaneously achieves a 3D range measurement using incoherent illumination. The observation range is obtained by the holographic reconstruction, while the in-plane range is determined using the two-dimensional digital imaging correlation (2D-DIC) technique. Experimental results on the resolution target demonstrate precise 3D ranging determination and improved measurement accuracy.

5.
J Org Chem ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822472

RESUMO

An efficient and chemodivergent synthesis of highly functionalized 1,4-dihydropyridazines and pyrazoles has been accomplished via base-promoted annulation between hydrazones and alkyl 2-aroyl-1-chlorocyclopropanecarboxylates, respectively. This transition-metal-free domino reaction proceeded rapidly under mild basic conditions, affording potentially bioactive 1,4-dihydropyridazine and pyrazole derivatives in moderate yields. The conversion of 1,4-dihydropyridazine to pyrazole was confirmed by adjusting the quantity of the base.

6.
Anal Bioanal Chem ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953919

RESUMO

A candidate reference measurement procedure (RMP) for serum theophylline via isotope dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed. With a single-step precipitation pretreatment and a 6-min gradient elution, the method achieved baseline separation of theophylline and its analogs on a C18-packed column. A bracketing calibration method was used to ensure repeatable signal intensity and high measurement precision. The intra-assay and inter-assay imprecisions were 1.06%, 0.84%, 0.72% and 0.47%, 0.41%, 0.25% at concentrations of 4.22 µg/mL (23.40 µmol/L), 8.45 µg/mL (46.90 µmol/L), and 15.21 µg/mL (84.43 µmol/L), respectively. Recoveries ranged from 99.35 to 102.34%. The limit of detection (LoD) was 2 ng/mL, and the lowest limit of quantification (LLoQ) was 5 ng/mL. The linearity range extended from 0.47 to 60 µg/mL (2.61-333.04 µmol/L). No ion suppression and carry-over (< 0.68%) were observed. The relative bias for this candidate RMP that participated in 2023 External Quality Control for Reference Laboratories (RELA) conducted by the International Federation of Clinical Chemistry (IFCC) was within a range of 0.17 to 0.93%. Furthermore, two clinical immunoassay systems were compared with this candidate RMP, demonstrating good correlations. The results of the Trueness Verification Plan indicate significant differences among routine systems, highlighting the need for standardization efforts. The developed candidate RMP for serum theophylline serves as a precise reference baseline for standardizing clinical systems and assigning values to reference materials.

7.
Molecules ; 29(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731443

RESUMO

In this work, a novel functionalized graphene oxide nucleating agent (GITP) was successfully synthesized using a silane coupling agent (IPTES), and polymer block (ITP) to efficiently improve the crystallization and mechanical performance of PET. To comprehensively investigate the effect of functionalized GO on PET properties, PET/GITP nanocomposites were prepared by introducing GITP into the PET matrix using the melt blending method. The results indicate that PET/GITP exhibits better thermal stability and crystallization properties compared with pure PET, increasing the melting temperature from 244.1 °C to 257.1 °C as well as reducing its crystallization half-time from 595 s to 201 s. Moreover, the crystallization temperature of PET/GITP nanocomposites was increased from 185.1 °C to 207.5 °C and the tensile strength was increased from 50.69 MPa to 66.8 MPa. This study provides an effective strategy for functionalized GO as a nucleating agent with which to improve the crystalline and mechanical properties of PET polyester.

8.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(1): 26-33, 2024 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-38403601

RESUMO

Sleep stage classification is essential for clinical disease diagnosis and sleep quality assessment. Most of the existing methods for sleep stage classification are based on single-channel or single-modal signal, and extract features using a single-branch, deep convolutional network, which not only hinders the capture of the diversity features related to sleep and increase the computational cost, but also has a certain impact on the accuracy of sleep stage classification. To solve this problem, this paper proposes an end-to-end multi-modal physiological time-frequency feature extraction network (MTFF-Net) for accurate sleep stage classification. First, multi-modal physiological signal containing electroencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG) and electromyogram (EMG) are converted into two-dimensional time-frequency images containing time-frequency features by using short time Fourier transform (STFT). Then, the time-frequency feature extraction network combining multi-scale EEG compact convolution network (Ms-EEGNet) and bidirectional gated recurrent units (Bi-GRU) network is used to obtain multi-scale spectral features related to sleep feature waveforms and time series features related to sleep stage transition. According to the American Academy of Sleep Medicine (AASM) EEG sleep stage classification criterion, the model achieved 84.3% accuracy in the five-classification task on the third subgroup of the Institute of Systems and Robotics of the University of Coimbra Sleep Dataset (ISRUC-S3), with 83.1% macro F1 score value and 79.8% Cohen's Kappa coefficient. The experimental results show that the proposed model achieves higher classification accuracy and promotes the application of deep learning algorithms in assisting clinical decision-making.


Assuntos
Fases do Sono , Sono , Fases do Sono/fisiologia , Polissonografia/métodos , Eletroencefalografia/métodos , Algoritmos
9.
Anal Chem ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630282

RESUMO

Emerging evidence suggests that advanced glycation end-products (AGEs) such as Nε-(carboxymethyl)lysine (CML) and Nε-(carboxymethyl)lysine (CEL) may play important roles in certain human diseases. Reliable analytical methods are needed for their characterizations and measurements. Pitfalls have been reported for applications of LC-MS/MS to identify various types of post-translational modifications, but not yet for the case of AGEs. Here, we showed that in the absence of manual inspection, cysteine alkylation with 2-iodoacetamide (IAA) can result in false-positive/ambiguous identifications of CML >20%. They were attributed to offsite alkylation together with incorrect monoisotopic peak assignment (pitfall 1) or together with deamidation (pitfall 2). For pitfall 1, false-positive identifications can be alleviated using a peptide mass error tolerance ≤5 ppm during the database search. Pitfall 2 results in ambiguous modification assignments, which may be overcome by using other alkylation reagents. According to calculations of theoretical mass shifts, the use of other common alkylation reagents (iodoacetic acid, 2-chloroacetamide, and acrylamide) should face similar pitfalls. The use of acrylamide can result in false-positive identifications of CEL instead of CML. Subsequently, we showed that compared to IAA, the use of N-isopropylacrylamide (NIPAM) as an alkylation reagent achieved similar levels of proteome coverage, while reducing the offsite alkylation reactions at lysine by more than five times. Furthermore, false-positive/ambiguous identifications of CML due to the two types of pitfalls were absent when using NIPAM. NIPAM alkylation results in a unique mass shift that allows reliable identifications of CML and most likely other AGEs, such as CEL.

10.
Opt Express ; 31(7): 11320-11334, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155770

RESUMO

In this study, we propose an innovative composite channel model that considers multi-size bubbles, absorption, and fading caused by scattering for investigating the effect of multiple scattering on the optical properties of a channel. The model is based on Mie theory, geometrical optics and the absorption-scattering model in the Monte-Carlo framework, and the performance of the optical communication system of the composite channel was analyzed for different positions, sizes, and number densities of bubbles. A comparison with the corresponding optical properties of conventional particle scattering indicated that a larger number of bubbles corresponded to greater attenuation of the composite channel, which was manifested by a low power at the receiver, an increased channel impulse response, and the observance of a prominent peak in the volume scattering function or critical scattering angles. Additionally, the effects of the position of large bubbles on the scattering property of the channel were investigated. The proposed composite channel model can provide reference data for designing a more reliable and comprehensive underwater optical wireless communication link.

11.
Anal Bioanal Chem ; 415(23): 5637-5644, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37490154

RESUMO

We developed and evaluated two-level, namely 2017011 and 2017012, serum-based reference materials (RMs) for 17 beta-estradiol (17 ß-E2) by the reference method of isotope dilution liquid chromatography tandem mass spectrometry (ID-LC-MS/MS) from the remaining serum samples after routine clinical tests, to help improve clinical routine testing and provide the traceability of results. This paper describes the development process of these RMs. The National Metrology Institute of Japan (NMIJ) certified reference material (CRM) 6004-a was used as the primary RM for the measurement of 17 ß-E2. These serum-based RMs showed satisfactory homogeneity and stability. They also assessed the commutability between the reference method and the three routine clinical immunoassay systems. Besides, a collaborative study was carried out in five reference laboratories, all of which had been accredited by the China National Accreditation Service for Conformity Assessment (CNAS) in accordance with ISO/WD 15725-1. Statistical analysis of raw results and uncertainty assessment obtained certified values: 2017011 was 445.2 ± 39.0 pmol/L, and 2017012 was 761.9 ± 35.5 pmol/L.


Assuntos
Estradiol , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Técnicas de Diluição do Indicador , Isótopos , Padrões de Referência
12.
Proc Natl Acad Sci U S A ; 117(11): 6121-6128, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123072

RESUMO

Virus replication requires critical interactions between viral proteins and cellular proteins that mediate many aspects of infection, including the transport of viral genomes to the site of replication. In human papillomavirus (HPV) infection, the cellular protein complex known as retromer binds to the L2 capsid protein and sorts incoming virions into the retrograde transport pathway for trafficking to the nucleus. Here, we show that short synthetic peptides containing the HPV16 L2 retromer-binding site and a cell-penetrating sequence enter cells, sequester retromer from the incoming HPV pseudovirus, and inhibit HPV exit from the endosome, resulting in loss of viral components from cells and in a profound, dose-dependent block to infection. The peptide also inhibits cervicovaginal HPV16 pseudovirus infection in a mouse model. These results confirm the retromer-mediated model of retrograde HPV entry and validate intracellular virus trafficking as an antiviral target. More generally, inhibiting virus replication with agents that can enter cells and disrupt essential protein-protein interactions may be applicable in broad outline to many viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Peptídeos Penetradores de Células/farmacologia , Papillomavirus Humano 16/efeitos dos fármacos , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos , Animais , Peptídeos Penetradores de Células/uso terapêutico , Colo do Útero/virologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Células HeLa , Papillomavirus Humano 16/fisiologia , Humanos , Camundongos , Infecções por Papillomavirus/virologia , Ligação Proteica/efeitos dos fármacos , Mapas de Interação de Proteínas/efeitos dos fármacos , Vagina/virologia
13.
Opt Express ; 30(18): 32438-32446, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242305

RESUMO

We report an all-fiber scheme for the second harmonic generation (SHG) by embedding gallium selenide (GaSe) nanosheets into a suspended-core fiber (SCF). Based on modes analysis and theoretical calculations, the phase-matching modes from multiple optional modes in the SHG process and the optimal SCF length are determined by calculating the effective refractive index and balancing the SHG growth and transmission loss. Due to the long-distance interaction between pumped fundamental mode and GaSe nanosheets around the suspended core, an SHG signal is observed under a milliwatt-level pump light, and exhibits a quadratic growth with the increased pump power. The SHG process is also realized in a broad wavelength range by varying the pump in the range of 1420∼1700 nm. The SCF with the large air cladding and suspended core as an excellent platform can therefore be employed to integrate low-dimensional nonlinear materials, which holds great promise for the applications of all-fiber structures in new light source generating, signal processing and fiber sensing.

15.
Molecules ; 24(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791449

RESUMO

Cystine is an important biomolecule in living systems. Although collision-induced dissociation (CID)-based tandem mass spectrometry (MS/MS) is commonly applied for identification and quantification of cystine in both biomedical and nutritional studies, gas-phase fragmentation reactions of cystine in CID has remained unclear. This may lead to improper assay design, which may in turn result in inaccurate test results. In the present study, gas-phase fragmentation reactions of protonated cystine in CID were characterized using high-resolution MS/MS and pseudo MS³. Fragmentations started from cleavages of disulfide bond (S⁻S) and carbon⁻sulfur bond (C⁻S). When cleaving at the S⁻S, protonated cysteine was generated as one of the predominant fragmentation products. Minor fragmentations started from the loss of H2O + CO and the loss of NH3. Our results reveal that the m/z 74 fragment ion, which is commonly used as a product ion of the transition (precursor/product ion pair) in selected reaction monitoring (SRM) assay for quantifying cystine, comprises two isobaric fragments originating from different parts of cystine. This indicates the need for careful selection of a stable isotope-labeled cystine molecule as an internal standard for SRM assays. Here, we provide a clear picture of the fragmentation reactions of protonated cystine in CID. It can serve as a useful guidance for designing MS/MS-based assays for cystine testing.


Assuntos
Cistina/química , Transição de Fase , Espectrometria de Massas em Tandem
16.
Proc Natl Acad Sci U S A ; 112(20): 6359-64, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25941402

RESUMO

Drosophila melanogaster kinesin-14 Ncd cross-links parallel microtubules at the spindle poles and antiparallel microtubules within the spindle midzone to play roles in bipolar spindle assembly and proper chromosome distribution. As observed for Saccharomyces cerevisiae kinesin-14 Kar3Vik1 and Kar3Cik1, Ncd binds adjacent microtubule protofilaments in a novel microtubule binding configuration and uses an ATP-promoted powerstroke mechanism. The hypothesis tested here is that Kar3Vik1 and Kar3Cik1, as well as Ncd, use a common ATPase mechanism for force generation even though the microtubule interactions for both Ncd heads are modulated by nucleotide state. The presteady-state kinetics and computational modeling establish an ATPase mechanism for a powerstroke model of Ncd that is very similar to those determined for Kar3Vik1 and Kar3Cik1, although these heterodimers have one Kar3 catalytic motor domain and a Vik1/Cik1 partner motor homology domain whose interactions with microtubules are not modulated by nucleotide state but by strain. The results indicate that both Ncd motor heads bind the microtubule lattice; two ATP binding and hydrolysis events are required for each powerstroke; and a slow step occurs after microtubule collision and before the ATP-promoted powerstroke. Note that unlike conventional myosin-II or other processive molecular motors, Ncd requires two ATP turnovers rather than one for a single powerstroke-driven displacement or step. These results are significant because all metazoan kinesin-14s are homodimers, and the results presented show that despite their structural and functional differences, the heterodimeric and homodimeric kinesin-14s share a common evolutionary structural and mechanochemical mechanism for force generation.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Cinesinas/metabolismo , Microtúbulos/metabolismo , Modelos Moleculares , Difosfato de Adenosina/metabolismo , Animais , Fenômenos Biomecânicos , Microscopia Crioeletrônica , Dimerização , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Cinesinas/química , Cinesinas/genética , Cinética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
17.
J Biol Chem ; 291(9): 4407-16, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26710851

RESUMO

Mammalian KIF3AC contains two distinct motor polypeptides and is best known for its role in organelle transport in neurons. Our recent studies showed that KIF3AC is as processive as conventional kinesin-1, suggesting that their ATPase mechanochemistry may be similar. However, the presence of two different motor polypeptides in KIF3AC implies that there must be a cellular advantage for the KIF3AC heterodimer. The hypothesis tested was whether there is an intrinsic bias within KIF3AC such that either KIF3A or KIF3C initiates the processive run. To pursue these experiments, a mechanistic approach was used to compare the pre-steady-state kinetics of KIF3AC to the kinetics of homodimeric KIF3AA and KIF3CC. The results indicate that microtubule collision at 11.4 µM(-1) s(-1) coupled with ADP release at 78 s(-1) are fast steps for homodimeric KIF3AA. In contrast, KIF3CC exhibits much slower microtubule association at 2.1 µM(-1) s(-1) and ADP release at 8 s(-1). For KIF3AC, microtubule association at 6.6 µM(-1) s(-1) and ADP release at 51 s(-1) are intermediate between the constants for KIF3AA and KIF3CC. These results indicate that either KIF3A or KIF3C can initiate the processive run. Surprisingly, the kinetics of the initial event of microtubule collision followed by ADP release for KIF3AC is not equivalent to 1:1 mixtures of KIF3AA plus KIF3CC homodimers at the same motor concentration. These results reveal that the intermolecular communication within the KIF3AC heterodimer modulates entry into the processive run regardless of whether the run is initiated by the KIF3A or KIF3C motor domain.


Assuntos
Trifosfato de Adenosina/metabolismo , Cinesinas/metabolismo , Modelos Moleculares , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Algoritmos , Animais , Biocatálise , Domínio Catalítico , Dimerização , Cinesinas/química , Cinesinas/genética , Camundongos , Microtúbulos/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , ortoaminobenzoatos/metabolismo
18.
Int J Mol Sci ; 17(11)2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27854260

RESUMO

For the past 20 years, we have witnessed an unprecedented and, indeed, rather miraculous event of how cell-penetrating peptides (CPPs), the naturally originated penetrating enhancers, help overcome the membrane barrier that has hindered the access of bio-macromolecular compounds such as genes and proteins into cells, thereby denying their clinical potential to become potent anti-cancer drugs. By taking the advantage of the unique cell-translocation property of these short peptides, various payloads of proteins, nucleic acids, or even nanoparticle-based carriers were delivered into all cell types with unparalleled efficiency. However, non-specific CPP-mediated cell penetration into normal tissues can lead to widespread organ distribution of the payloads, thereby reducing the therapeutic efficacy of the drug and at the same time increasing the drug-induced toxic effects. In view of these challenges, we present herein a review of the new designs of CPP-linked vehicles and strategies to achieve highly effective yet less toxic chemotherapy in combating tumor oncology.


Assuntos
Antineoplásicos/administração & dosagem , Peptídeos Penetradores de Células/administração & dosagem , Portadores de Fármacos/administração & dosagem , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacocinética , Peptídeos Penetradores de Células/farmacocinética , Portadores de Fármacos/farmacocinética , Endocitose , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade , Distribuição Tecidual
19.
Cancer Immunol Immunother ; 63(2): 121-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177984

RESUMO

There have been several studies suggesting that cancer stem cells (CSCs) contribute to the high rates of recurrence and resistance to therapies observed in hepatocellular carcinoma (HCC). Epithelial cell adhesion molecule (EpCAM) has been demonstrated to be a biomarker of CSCs and a potential therapeutic target in HCC. Here, we prepared two anti-EpCAM monoclonal antibodies (1H8 and 2F2) and an anti-EpCAM bispecific T cell engager (BiTE) 1H8/CD3, which was derived from 1H8, and used them to treat HCC in vitro and in vivo. The results demonstrated that all of the developed anti-EpCAM antibodies specifically bound to EpCAM. Neither anti-EpCAM monoclonal antibody had obvious anti-HCC activities in vitro or in vivo. However, anti-EpCAM BiTE 1H8/CD3 induced strong peripheral blood mononuclear cell-dependent cellular cytotoxicity in Huh-7 and Hep3B cells but not EpCAM-negative SK-Hep-1 cells. Notably, 1H8/CD3 completely inhibited the growth of Huh-7 and Hep3B xenografts in vivo. Treatment of the Huh-7 HCC xenografts with 1H8/CD3 significantly suppressed tumor proliferation and reduced the expression of most CSC biomarkers. Intriguingly, galectin-1 (Gal-1) overexpression inhibited 1H8/CD3-induced lymphocytotoxicity in HCCs while knockdown of Gal-1 increased the lymphocytotoxicity. Collectively, these results indicate that anti-EpCAM BiTE 1H8/CD3 is a promising therapeutic agent for HCC treatment. Gal-1 may contribute to the resistance of HCC cells to 1H8/CD3-induced lysis.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Complexo CD3/imunologia , Carcinoma Hepatocelular/terapia , Moléculas de Adesão Celular/imunologia , Galectina 1/análise , Neoplasias Hepáticas/terapia , Antígeno AC133 , Animais , Antígenos CD/análise , Antígenos de Neoplasias/análise , Moléculas de Adesão Celular/análise , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Galectina 1/fisiologia , Glicoproteínas/análise , Humanos , Camundongos , Peptídeos/análise
20.
Zhongguo Zhong Yao Za Zhi ; 39(5): 841-5, 2014 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-25204176

RESUMO

Twelve compounds were isolated from the venom of Bufo bufo gargarizans. On the basis of their physical and chemical properties and spectral data, their structures were identified as resibufagenin (1), bufotalin (2), desacetylcinobufagin (3), 19-oxodesacetylcinobufotalin (4), cinobufotalin (5), 1beta-hydroxylbufalin (6), 12alpha-hydroxybufalin (7), bufotalinin (8), Hellebrigenin (9), telocinobufagin (10), hellebrigenol (11) and cinobufagin-3-hemisuberate methyl ester (12), respectively. Compounds 7 and 12 are new natural products.


Assuntos
Bufanolídeos/química , Peçonhas/química , Animais , Bufo bufo , Medicina Tradicional Chinesa , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa