Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Biol Chem ; 299(7): 104856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37230388

RESUMO

Neuroblastoma (NB) is one of the most common extracranial solid tumors in children. MYCN gene amplification is highly associated with poor prognosis in high-risk NB patients. In non-MYCN-amplified high-risk NB patients, the expression of c-MYC (MYCC) and its target genes is highly elevated. USP28 as a deubiquitinase is known to regulate the stability of MYCC. We show here USP28 also regulates the stability of MYCN. Genetic depletion or pharmacologic inhibition of the deubiquitinase strongly destabilizes MYCN and stops the growth of NB cells that overexpress MYCN. In addition, MYCC could be similarly destabilized in non-MYCN NB cells by compromising USP28 function. Our results strongly suggest USP28 as a therapeutic target for NB with or without MYCN amplification/overexpression.


Assuntos
Células-Tronco Neurais , Neuroblastoma , Criança , Humanos , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Proteína Proto-Oncogênica N-Myc/uso terapêutico , Células-Tronco Neurais/metabolismo , Neuroblastoma/patologia , Fatores de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo
2.
Br J Haematol ; 204(6): 2301-2318, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685813

RESUMO

T-cell acute lymphoblastic leukaemia (T-ALL) is a highly aggressive and heterogeneous lymphoid malignancy with poor prognosis in adult patients. Aberrant activation of the NOTCH1 signalling pathway is involved in the pathogenesis of over 60% of T-ALL cases. Ubiquitin-specific protease 28 (USP28) is a deubiquitinase known to regulate the stability of NOTCH1. Here, we report that genetic depletion of USP28 or using CT1113, a potent small molecule targeting USP28, can strongly destabilize NOTCH1 and inhibit the growth of T-ALL cells. Moreover, we show that USP28 also regulates the stability of sterol regulatory element binding protein 1 (SREBP1), which has been reported to mediate increased lipogenesis in tumour cells. As the most critical transcription factor involved in regulating lipogenesis, SREBP1 plays an important role in the metabolism of T-ALL. Therefore, USP28 may be a potential therapeutic target, and CT1113 may be a promising novel drug for T-ALL with or without mutant NOTCH1.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Ubiquitina Tiolesterase , Humanos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Nature ; 564(7734): 136-140, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30487604

RESUMO

Postnatal growth of mammalian oocytes is accompanied by a progressive gain of DNA methylation, which is predominantly mediated by DNMT3A, a de novo DNA methyltransferase1,2. Unlike the genome of sperm and most somatic cells, the oocyte genome is hypomethylated in transcriptionally inert regions2-4. However, how such a unique feature of the oocyte methylome is determined and its contribution to the developmental competence of the early embryo remains largely unknown. Here we demonstrate the importance of Stella, a factor essential for female fertility5-7, in shaping the oocyte methylome in mice. Oocytes that lack Stella acquire excessive DNA methylation at the genome-wide level, including in the promoters of inactive genes. Such aberrant hypermethylation is partially inherited by two-cell-stage embryos and impairs zygotic genome activation. Mechanistically, the loss of Stella leads to ectopic nuclear accumulation of the DNA methylation regulator UHRF18,9, which results in the mislocalization of maintenance DNA methyltransferase DNMT1 in the nucleus. Genetic analysis confirmed the primary role of UHRF1 and DNMT1 in generating the aberrant DNA methylome in Stella-deficient oocytes. Stella therefore safeguards the unique oocyte epigenome by preventing aberrant de novo DNA methylation mediated by DNMT1 and UHRF1.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Epigênese Genética , Oócitos/metabolismo , Proteínas Repressoras/metabolismo , Animais , Proteínas Estimuladoras de Ligação a CCAAT , Linhagem Celular , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , Desenvolvimento Embrionário , Feminino , Genoma/genética , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases , Zigoto/metabolismo
4.
J Biol Chem ; 298(1): 101443, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34822842

RESUMO

Triple-negative breast cancer (TNBC) lacks significant expression of the estrogen receptor, the progesterone receptor, and of human epidermal growth factor receptor. It is the most aggressive and malignant of all breast cancers, and for which, there are currently no effective targeted therapies. We have shown previously that the RecQ helicase family member RECQL5 is essential for the proliferation and survival of TNBC cells; however, the mechanism of its involvement in cell viability has not been shown. Here, we report that the expression of RecQ family helicases, including RECQL5, is regulated by the deubiquitinase USP28. We found using genetic depletion or a small molecule inhibitor that like RECQL5, USP28 is also essential for TNBC cells to proliferate in vitro and in vivo. Compromising the function of USP28 by shRNA knockdown or the inhibitor caused TNBC cells to arrest in S/G2 phases, concurrent with DNA-damage checkpoint activation. We further showed that the small molecule inhibitor of USP28 displayed anti-tumor activity against xenografts derived from TNBC cells. Our results suggest that USP28 could be a potential therapeutic target for triple negative breast cancer.


Assuntos
RecQ Helicases , Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Enzimas Desubiquitinantes/metabolismo , Humanos , RecQ Helicases/biossíntese , RecQ Helicases/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ubiquitina Tiolesterase/genética
5.
Exp Cell Res ; 410(2): 112971, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906583

RESUMO

The emergence of chimeric antigen receptor T (CAR-T) cell therapy has ushered a new era in cancer therapy, especially the treatment of hematological malignancies. However, resistance and recurrence still occur in some patients after CAR-T cell treatment. CAR-T cell inefficiency and tumor escape have emerged as the main challenges for the long-term disease control of B cell malignancies by this promising immunotherapy. In solid tumor treatment, CAR-T cells must also overcome many hurdles from the tumor or immune-suppressed tumor environment, which have become obstacles to the advancement of CAR-T therapy. Therefore, an understanding of the mechanisms underlying post-CAR treatment failure in patients is necessary. In this review, we characterize some mechanisms of resistance and recurrence after CAR-T cell therapy and correspondingly suggest reasonable treatment strategies.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Imunoterapia Adotiva , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Humanos , Estados Unidos , United States Food and Drug Administration
6.
Cancer Sci ; 113(10): 3463-3475, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880246

RESUMO

Overexpression of ubiquitin-specific protease 28 (USP28) is found in hepatic carcinoma. It is unclear whether the deubiquitinase plays a role in hepatocarcinogenesis. Deregulation of the Wnt signaling pathway is frequently associated with liver cancer. Transcription factor 7-like 2 (TCF7L2) is an important downstream transcription factor of the Wnt/ß-catenin signaling pathway, but the mechanisms by which TCF7L2 itself is regulated have not yet been revealed. Here, we report that USP28 promotes the activity of the Wnt signaling pathway through maintaining the stability of TCF7L2. We further show that FBXW7 is the E3 ubiquitin ligase for TCF7L2. By regulating the levels of TCF7L2, USP28 modulates the Wnt/ß-catenin signaling in liver cancer and USP28 depletion or inhibition by a small molecule inhibitor leads to a halt of growth in liver cancer cells. These results suggest that USP28 could be a potential therapeutic target for liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Linhagem Celular Tumoral , Enzimas Desubiquitinantes , Proteína 7 com Repetições F-Box-WD/metabolismo , Humanos , Fator 1 de Transcrição de Linfócitos T/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo
7.
Cancer Invest ; 40(3): 282-292, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34797742

RESUMO

Despite high remission rates following chimeric antigen receptor T cell (CAR-T) cell therapy in B-cell acute lymphoblastic leukemia (B-ALL), relapse due to loss of the targeted antigen is increasingly recognized as a mechanism of immune escape. We hypothesized that simultaneous targeting of CD19 and CD22 may improve the CAR-T effect. The in vitro and in vivo leukemia model was established, and the anti-tumor effects of BiCAR-T, CD19 CAR-T, CD22 CAR-T, and LoopCAR6 cells were observed. We found that the BiCAR-T cells showed significant cytotoxicity in vitro and in vivo. The CD19/CD22 bivalent CAR provides an opportunity to test whether simultaneous targeting may reduce the risk of antigen loss.


Assuntos
Antígenos CD19/imunologia , Imunoterapia Adotiva/métodos , Leucemia Experimental/terapia , Receptores de Antígenos Quiméricos/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Animais , Antígenos CD19/genética , Feminino , Humanos , Células K562 , Lentivirus/genética , Camundongos , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética
8.
Hum Mol Genet ; 26(13): 2398-2411, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398475

RESUMO

Fat mass and obesity-associated gene (FTO) is a member of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase family and is linked to both obesity and intellectual disability. The role of FTO in neurodevelopment and neurogenesis, however, remains largely unknown. Here we show that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment. The loss of FTO leads to decreased brain size and body weight. We find that FTO deficiency could reduce the proliferation and neuronal differentiation of adult neural stem cells in vivo, which leads to impaired learning and memory. Given the role of FTO as a demethylase of N6-methyladenosine (m6A), we went on to perform genome-wide m6A profiling and observed dynamic m6A modification during postnatal neurodevelopment. The loss of FTO led to the altered expression of several key components of the brain derived neurotrophic factor pathway that were marked by m6A. These results together suggest FTO plays important roles in neurogenesis, as well as in learning and memory.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Neurogênese/genética , Animais , Peso Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Memória , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Obesidade/genética
9.
Exp Cell Res ; 362(2): 279-286, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29174981

RESUMO

Tumor cells often encounter hypoglycemic microenvironment due to rapid cell expansion. It remains elusive how tumors reprogram the genome to survive the metabolic stress. The tumor suppressor TIP60 functions as the catalytic subunit of the human NuA4 histone acetyltransferase (HAT) multi-subunit complex and is involved in many different cellular processes including DNA damage response, cell growth and apoptosis. Attenuation of TIP60 expression has been detected in various tumor types. The function of TIP60 in tumor development has not been fully understood. Here we found that suppressing TIP60 inhibited p53 K120 acetylation and thus rescued apoptosis induced by glucose deprivation in hepatocellular cancer cells. Excitingly, Lys-104 (K104), a previously identified lysine acetylation site of TIP60 with unknown function, was observed to be indispensable for inducing p53-mediated apoptosis under low glucose condition. Mutation of Lys-104 to Arg (K104R) impeded the binding of TIP60 to human NuA4 complex, suppressed the acetyltransferase activity of TIP60, and inhibited the expression of pro-apoptotic genes including NOXA and PUMA upon glucose starvation. These findings demonstrate the critical regulation of TIP60/p53 pathway in apoptosis upon metabolic stress and provide a novel insight into the down-regulation of TIP60 in tumor cells.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Lisina Acetiltransferase 5/genética , Proteína Supressora de Tumor p53/genética , Acetilação , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Dano ao DNA/genética , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Estresse Fisiológico/genética
10.
Mol Ther ; 26(12): 2779-2797, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30266653

RESUMO

Liver sinusoidal endothelial cells (LSECs) have great capacity for liver regeneration, and this capacity can easily switch to profibrotic phenotype, which is still poorly understood. In this study, we elucidated a potential target in LSECs for regenerative treatment that can bypass fibrosis during chronic liver injury. Proregenerative LSECs can be transformed to profibrotic phenotype after 4 weeks of carbon tetrachloride administration or 10 days of bile duct ligation. This phenotypic alternation of LSECs was mediated by extracellular regulated protein kinases 1 and 2 (Erk1/2)-Akt axis switch in LSECs during chronic liver injury; Erk1/2 was normally associated with maintenance of the LSEC proregenerative phenotype, inhibiting hepatic stellate cell (HSC) activation and promoting tissue repair by enhancing nitric oxide (NO)/reactive oxygen species (ROS) ratio and increasing expression of hepatic growth factor (HGF) and Wingless-type MMTV integration site family member 2 (Wnt2). Alternatively, Akt induced LSEC profibrotic phenotype, which mainly stimulated HSC activation and concomitant senescence by reducing NO/ROS ratio and decreasing HGF/Wnt2 expression. LSEC-targeted adenovirus or drug particle to promote Erk1/2 activity can alleviate liver fibrosis, accelerate fibrosis resolution, and enhance liver regeneration. This study demonstrated that the Erk1/2-Akt axis acted as a switch to regulate the proregenerative and profibrotic phenotypes of LSECs, and targeted therapy promoted liver regeneration while bypassing fibrosis, providing clues for a more effective treatment of liver diseases.


Assuntos
Hepatopatias/metabolismo , Hepatopatias/patologia , Regeneração Hepática , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Doença Crônica , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Imunofluorescência , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatias/etiologia , Hepatopatias/terapia , Camundongos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
11.
J Biol Chem ; 292(11): 4533-4543, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28115522

RESUMO

UHRF2 has been implicated as a novel regulator for both DNA methylation (5mC) and hydroxymethylation (5hmC), but its physiological function and role in DNA methylation/hydroxymethylation are unknown. Here we show that in mice, UHRF2 is more abundantly expressed in the brain and a few other tissues. Uhrf2 knock-out mice are viable and fertile and exhibit no gross defect. Although there is no significant change of DNA methylation, the Uhrf2 null mice exhibit a reduction of 5hmC in the brain, including the cortex and hippocampus. Furthermore, the Uhrf2 null mice exhibit a partial impairment in spatial memory acquisition and retention. Consistent with the phenotype, gene expression profiling uncovers a role for UHRF2 in regulating neuron-related gene expression. Finally, we provide evidence that UHRF2 binds 5hmC in cells but does not appear to affect the TET1 enzymatic activity. Together, our study supports UHRF2 as a bona fide 5hmC reader and further demonstrates a role for 5hmC in neuronal function.


Assuntos
5-Metilcitosina/análogos & derivados , Encéfalo/fisiologia , Metilação de DNA , Aprendizagem Espacial , Ubiquitina-Proteína Ligases/metabolismo , 5-Metilcitosina/análise , 5-Metilcitosina/metabolismo , Animais , Química Encefálica , Linhagem Celular , Feminino , Humanos , Locomoção , Masculino , Memória , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/genética
12.
Exp Cell Res ; 354(2): 78-84, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322826

RESUMO

Cdh1 is one of the two adaptor proteins of anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase controlling mitosis and DNA replication. To date, the in vivo functions of Cdh1 have not been fully explored. In order to characterize Cdh1 in liver regeneration, we generated a conditional knock-out mouse model. Our data showed that loss of Cdh1 leads to increased and extended S phase progression possibly due to the upregulation of cyclin D1. Moreover, the increased DNA replication resulted in activated DNA damage response. Interestingly, the final liver weight after partial hepatectomy in the Cdh1 depleted mice did not differ from that of the controls, implying that Cdh1 is not required for the competence of hepatocytes to regenerate itself.


Assuntos
Proteínas Cdh1/metabolismo , Ciclo Celular , Regeneração Hepática , Animais , Ciclinas/metabolismo , Replicação do DNA , Deleção de Genes , Hepatectomia , Camundongos Knockout , Fenótipo , Fase S , Estresse Fisiológico
13.
Mol Cell Proteomics ; 15(10): 3190-3202, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27562671

RESUMO

Parenchymatous organs consist of multiple cell types, primarily defined as parenchymal cells (PCs) and nonparenchymal cells (NPCs). The cellular characteristics of these organs are not well understood. Proteomic studies facilitate the resolution of the molecular details of different cell types in organs. These studies have significantly extended our knowledge about organogenesis and organ cellular composition. Here, we present an atlas of the cell-type-resolved liver proteome. In-depth proteomics identified 6000 to 8000 gene products (GPs) for each cell type and a total of 10,075 GPs for four cell types. This data set revealed features of the cellular composition of the liver: (1) hepatocytes (PCs) express the least GPs, have a unique but highly homogenous proteome pattern, and execute fundamental liver functions; (2) the division of labor among PCs and NPCs follows a model in which PCs make the main components of pathways, but NPCs trigger the pathways; and (3) crosstalk among NPCs and PCs maintains the PC phenotype. This study presents the liver proteome at cell resolution, serving as a research model for dissecting the cell type constitution and organ features at the molecular level.


Assuntos
Fígado/citologia , Proteoma/análise , Análise de Célula Única/métodos , Animais , Ontologia Genética , Fígado/metabolismo , Camundongos , Proteômica/métodos
14.
J Proteome Res ; 16(12): 4506-4514, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28944671

RESUMO

Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl4. This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).


Assuntos
Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Animais , Carbono/metabolismo , Humanos , Regeneração Hepática , Camundongos , Proteínas de Neoplasias/análise
15.
Clin Sci (Lond) ; 131(15): 1895-1904, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28611236

RESUMO

Growth differentiation factor 11 (GDF-11) has been implicated in reverse effects of ageing on the central nervous system of humans. ß2-microglobulin (ß2-MG) has been reported to negatively regulate cognition. However, there is a lot of controversy about the role of GDF-11 and ß2-MG in ageing and cognitive regulation. To examine the involvement of GDF-11 and ß2-MG in the ageing process and cognitive dysfunction, a total of 51 healthy subjects and 41 elderly patients with different degrees of age-related cognitive impairment participated in the study. We measured plasma GDF-11 and ß2-MG levels using ELISA and immunoturbidimetry, respectively. The results were statistically analyzed to evaluate the associations between levels of GDF-11 and ß2-MG, and ageing and cognitive impairments. Circulating GDF-11 levels did not decline with age or correlate with ageing in healthy Chinese males. We did not detect differences in circulating GDF-11 levels amongst the healthy advanced age and four cognitive impairment groups. ß2-MG levels increased with age, but there was no significant difference between healthy elderly males and advanced age males. Increased levels of ß2-MG were observed in the dementia group compared with the healthy advanced age group. Our results suggest that circulating GDF-11 may not exert a protective effect during the ageing process or on cognitive function, and ß2-MG may play a role in ageing and cognitive impairment. However, it is possible that the relatively small sample size in the present study affected the quality of the statistical analysis, and future studies are needed to further validate our findings.


Assuntos
Envelhecimento/sangue , Proteínas Morfogenéticas Ósseas/sangue , Transtornos Cognitivos/sangue , Fatores de Diferenciação de Crescimento/sangue , Microglobulina beta-2/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/sangue , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , Demência Vascular/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
16.
Proc Natl Acad Sci U S A ; 111(3): 1008-13, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395789

RESUMO

Pituitary tumor transforming gene 1 (Pttg1) encodes the mammalian securin, which is an inhibitor of separase (a protease required for the separation of sister chromatids in mitosis and meiosis). PTTG1 is overexpressed in a number of human cancers and has been suggested to be an oncogene. However, we found that, in Pttg1-mutant females, the mammary epithelial cells showed increased proliferation and precocious branching morphogenesis. In accord with these phenotypic changes, progesterone receptor, cyclin D1, and Mmp2 were up-regulated whereas p21 (Cdkn1a) was down-regulated. These molecular changes provide explanation for the observed developmental defects, and suggest that Pttg1 is a tumor suppressor. Indeed, mice lacking Pttg1 developed spontaneous mammary tumors. Furthermore, in human breast tumors, PTTG1 protein levels were down-regulated and the reduction was significantly correlated with the tumor grade.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Regulação Neoplásica da Expressão Gênica , Glândulas Mamárias Animais/fisiologia , Neoplasias Mamárias Animais/metabolismo , Securina/fisiologia , Animais , Apoptose , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Cromátides/química , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Células Epiteliais/citologia , Feminino , Perfilação da Expressão Gênica , Humanos , Glândulas Mamárias Animais/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Securina/genética , Securina/metabolismo , Fatores de Tempo
17.
Biochem Biophys Res Commun ; 474(2): 395-399, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27125457

RESUMO

The CRISPR-Cas9 genome editing system has been widely used in multiple cells and organisms. Here we developed a CRISPR-Cas9 based in vitro large DNA vector editing system, using the Ad5-based vector as an example. We demonstrate use of this system to generate targeted mutations, in-frame gene deletion, and gene replacement. This in vitro CRISPR editing system exhibits high efficiency and accuracy. We believe this system can be applied in a variety of experimental settings.


Assuntos
Adenoviridae/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Mutagênese Sítio-Dirigida/métodos , Transfecção/métodos , Vetores Genéticos/genética
18.
J Immunol ; 193(4): 1737-46, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25015818

RESUMO

Constitutive expression of Krüppel-like factor 3 (KLF3, BKLF) increases marginal zone (MZ) B cell numbers, a phenotype shared with mice lacking KLF2. Ablation of KLF3, known to interact with serum response factor (SRF), or SRF itself, results in fewer MZ B cells. It is unknown how these functional equivalences result. In this study, it is shown that KLF3 acts as transcriptional repressor for the leukocyte-specific integrin ß7 (Itgb7, Ly69) by binding to the ß7 promoter, as revealed by chromatin immunoprecipitation. KLF2 overexpression antagonizes this repression and also binds the ß7 promoter, indicating that these factors may compete for target sequence(s). Whereas ß7 is identified as direct KLF target, its repression by KLF3 is not connected to the MZ B cell increase because ß7-deficient mice have a normal complement of these and the KLF3-driven increase still occurs when ß7 is deleted. Despite this, KLF3 overexpression abolishes lymphocyte homing to Peyer's patches, much like ß7 deficiency does. Furthermore, KLF3 expression alone overcomes the MZ B cell deficiency when SRF is absent. SRF is also dispensable for the KLF3-mediated repression of ß7. Thus, despite the shared phenotype of KLF3 and SRF-deficient mice, cooperation of these factors appears neither relevant for the formation of MZ B cells nor for the regulation of ß7. Finally, a potent negative regulatory feedback loop limiting KLF3 expression is shown in this study, mediated by KLF3 directly repressing its own gene promoter. In summary, KLFs use regulatory circuits to steer lymphocyte maturation and homing and directly control leukocyte integrin expression.


Assuntos
Linfócitos B/imunologia , Cadeias beta de Integrinas/genética , Fatores de Transcrição Kruppel-Like/genética , Linfopoese/imunologia , Animais , Antígenos CD11/biossíntese , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA , Regulação da Expressão Gênica/imunologia , Cadeias alfa de Integrinas/biossíntese , Fatores de Transcrição Kruppel-Like/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Nódulos Linfáticos Agregados/imunologia , Regiões Promotoras Genéticas , Ligação Proteica , Fator de Resposta Sérica/genética
19.
Mol Cell ; 31(1): 143-51, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614053

RESUMO

Sister chromatid cohesion is normally established in S phase in a process that depends on the cohesion establishment factor Eco1, a conserved acetyltransferase. However, due to the lack of known in vivo substrates, how Eco1 regulates cohesion is not understood. Here we report that yeast Eco1 and its human ortholog, ESCO1, both acetylate Smc3, a component of the cohesin complex that physically holds the sister chromatid together, at two conserved lysine residues. Mutating these lysine residues to a nonacetylatable form leads to increased loss of sister chromatid cohesion and genome instability in both yeast and human. In addition, we clarified that the acetyltransferase activity of Eco1 is essential for its function. Our study thus identified a molecular target for the acetyltransferase Eco1 and revealed that Smc3 acetylation is a conserved mechanism in regulating sister chromatid cohesion.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Troca de Cromátide Irmã , Acetilação , Sequência de Aminoácidos , Proteínas de Ciclo Celular/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Proteoglicanas de Sulfatos de Condroitina/química , Proteínas Cromossômicas não Histona/química , Instabilidade Genômica , Humanos , Lisina/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Especificidade por Substrato
20.
Nat Cell Biol ; 10(9): 1083-9, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19160489

RESUMO

The anaphase promoting complex (APC) or cyclosome is a multisubunit E3 ubiquitin ligase. Cdc20 (fizzy (fzy)) or p55CDC, and Cdh1 (Hct1, srw1 or fizzy-related 1 (fzr1)) encode two adaptor proteins that bring substrates to the APC. Both APC-Cdc20 and APC-Cdh1 have been implicated in the control of mitosis through mediating ubiquitination of mitotic regulators, such as cyclin B1 and securin. However, the importance of Cdh1 function in vivo and whether its function is redundant with that of Cdc20 are unclear. Here we have analysed mice lacking Cdh1. We show that Cdh1 is essential for placental development and that its deficiency causes early lethality. Cdhl-deficient mouse embryonic fibroblasts (MEFs) entered replicative senescence prematurely because of stabilization of Ets2 and subsequent activation of p6(Ink4a) expression. These results have uncovered an unexpected role of the APC in maintaining replicative lifespan of MEFs. Further, Cdh1 heterozygous mice show defects in late-phase long-term potentiation (L-LTP) in the hippocampus and are deficient in contextual fear-conditioning, suggesting that Cdh1 has a role in learning and memory.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular , Memória/fisiologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Proteínas Cdh1 , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Perda do Embrião/metabolismo , Fibroblastos/enzimologia , Fibroblastos/patologia , Heterozigoto , Técnicas In Vitro , Camundongos , Estabilidade Proteica , Proteína Proto-Oncogênica c-ets-2/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa