Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Funct Integr Genomics ; 24(2): 64, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517551

RESUMO

Pittosporum (Pittosporaceae) is famous as the ornamental and medical values, which is distributed tropical and subtropical regions of Eastern Hemisphere. The few phylogenetic studies have included samples from the Pacific Island, but the phylogenetic relationships of Asian species has not been studied. Here, the complete chloroplast (cp) genomes of ten Pittosporum species from East Asia were first sequenced and compared with those of the published species of this genus. Our results indicated that cp genomes of these species had a typical and conserved quadripartite structure. 131 genes were identical in order and orientation and no changes of inverted repeat (IR) occurred. However, the comparative analysis of cp genomes suggested that sequence divergence mainly appeared in non-coding or intergenic regions, in which several divergence hotspots were identified. By contrast, protein-coding genes showed the lowest variance under strong purifying selection. Phylogenetic analysis based on the cp genome sequences showed that the tested Pittosporum species were clustered into two major clades, in which the Asian species formed Clade I and the remaining species from Australia and New Zealand formed Clade II with high support values, which was consistent with the results of ITS data with low support values. These results suggested that cp genome is a robust phylogenetic indicator for deep nodes in the phylogeny of Pittosporum. Meanwhile, these results will provide the valuable information to better understand the phylogeny and biogeography of Pittosporum.


Assuntos
Genoma de Cloroplastos , Filogenia , Ásia Oriental
2.
Am J Chin Med ; 52(1): 35-55, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353635

RESUMO

Asian ginseng, the root of Panax ginseng C.A. Meyer, occupies a prominent position in the list of best-selling natural products in the world. There are two major types of ginseng roots: white ginseng and red ginseng, each with numerous preparations. White ginseng is prepared by air-drying fresh Asian ginseng roots after harvest. Red ginseng is prepared by steaming roots in controlled conditions using fresh or raw Asian ginseng. Red ginseng is commonly used in Asian countries due to its unique chemical profile, different therapeutic efficacy, and increased stability. Compared with the widespread research on white ginseng, the study of red ginseng is relatively limited. In this paper, after a botanical feature description, the structures of different types of constituents in red ginseng are systematically described, including naturally occurring compounds and those resulting from the steam processing. In red ginseng phytochemical studies, the number of published reports on ginsenosides is significantly higher than that for other constituents. Up to now, 57 ginsenosides have been isolated and characterized in red ginseng. The structural transformation pathways during steaming have been summarized. In comparison with white ginseng, red ginseng also contains other constituents, including polyacetylenes, Maillard reaction products, other types of glycosides, lignans, amino acids, fatty acids, and polysaccharides, which have also been presented. Appropriate analytical methods are necessary for differentiating between unprocessed white ginseng and processed red ginseng. Specific marker compounds and chemical profiles have been used to discriminate red ginseng from white ginseng and adulterated commercial products. Additionally, a brief phytochemical profile comparison has been made between white ginseng and black ginseng, and the latter is another type of processed ginseng prepared from white or red ginseng by steaming several times. In conclusion, to ensure the safe and effective use of red ginseng, phytochemical and analytical studies of its constituents are necessary and even crucial.


Assuntos
Terapias Complementares , Ginsenosídeos , Panax , Ginsenosídeos/uso terapêutico , Vapor , Panax/química , Compostos Fitoquímicos
3.
Am J Chin Med ; 52(4): 1137-1154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38879746

RESUMO

Flavonol and flavonoid compounds are important natural compounds with various biomedical activities. Therefore, it is of great significance to develop a strategy for the specific extraction of flavonol and flavonoid compounds. Quercetin is a well-studied flavonoid possessing many health benefits. This compound is a versatile antioxidant known to possess protective abilities against body tissue injury induced by pathological situations and various drug toxicities. Although quercetin is widely distributed in many plants, its content generally is not very high. Therefore, the specific extraction of quercetin as well as other flavonol and flavonoid compounds has profound significance. In this work, the quercetin molecularly imprinting polymer (QMIP) was successfully prepared, in which a typical flavonol quercetin was selected as the template molecule. QMIP was synthesized by performing the surface molecular imprinting technology on the surface of NH2-MIL-101(Fe). Our study results showed that QMIP exhibited quick binding kinetic behavior, a high adsorption capacity (57.04[Formula: see text]mg/g), and the specific recognition ability toward quercetin compared with structurally distinct compounds (selective [Formula: see text]). The specific adsorption ability of quercetin by QMIP was further explained using computation simulation that molecules with non-planar 3D conformations hardly entered the molecularly imprinted cavities on QMIP. Finally, QMIP was successfully used for the specific extraction of quercetin and five other flavonol and flavonoid compounds in the crude extracts from Sapium sebiferum. This study proposes a new strategy to synthesize the molecularly imprinted polymer based on a single template for enriching and loading a certain class of active ingredients with similar core structures from variable botanicals.


Assuntos
Flavonoides , Flavonóis , Impressão Molecular , Polímeros Molecularmente Impressos , Quercetina , Quercetina/isolamento & purificação , Quercetina/química , Flavonoides/isolamento & purificação , Flavonoides/química , Flavonóis/isolamento & purificação , Flavonóis/química , Polímeros Molecularmente Impressos/química , Antioxidantes/isolamento & purificação , Adsorção , Polímeros/química
4.
World J Gastrointest Surg ; 16(6): 1857-1870, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983342

RESUMO

BACKGROUND: Sarcopenia is a syndrome marked by a gradual and widespread reduction in skeletal muscle mass and strength, as well as a decline in functional ability, which is associated with malnutrition, hormonal changes, chronic inflammation, disturbance of intestinal flora, and exercise quality. Pancreatoduodenectomy is a commonly employed clinical intervention for conditions such as pancreatic head cancer, ampulla of Vater cancer, and cholangiocarcinoma, among others, with a notably high rate of postoperative complications. Sarcopenia is frequent in patients undergoing pancreatoduodenectomy. However, data regarding the effects of sarcopenia in patients undergoing pancreaticoduodenectomy (PD) are both limited and inconsistent. AIM: To assess the influence of sarcopenia on outcomes in patients undergoing PD. METHODS: The PubMed, Cochrane Library, Web of Science, and Embase databases were screened for studies published from the time of database inception to June 2023 that described the effects of sarcopenia on the outcomes and complications of PD. Two researchers independently assessed the quality of the data extracted from the studies that met the inclusion criteria. Meta-analysis using RevMan 5.3.5 and Stata 14.0 software was conducted. Forest and funnel plots were used, respectively, to demonstrate the outcomes of the sarcopenia group vs the non-sarcopenia group after PD and to evaluate potential publication bias. RESULTS: Sixteen studies encompassing 2381 patients were included in the meta-analysis. The patients in the sarcopenia group (n = 833) had higher overall postoperative complication rates [odds ratio (OR) = 3.42, 95% confidence interval (CI): 1.95-5.99, P < 0.0001], higher Clavien-Dindo class ≥ III major complication rates (OR = 1.41, 95%CI: 1.04-1.90, P = 0.03), higher bacteremia rates (OR = 4.46, 95%CI: 1.42-13.98, P = 0.01), higher pneumonia rates (OR = 2.10, 95%CI: 1.34-3.27, P = 0.001), higher pancreatic fistula rates (OR = 1.42, 95%CI: 1.12-1.79, P = 0.003), longer hospital stays (OR = 2.86, 95%CI: 0.44-5.28, P = 0.02), higher mortality rates (OR = 3.17, 95%CI: 1.55-6.50, P = 0.002), and worse overall survival (hazard ratio = 2.81, 95%CI: 1.45-5.45, P = 0.002) than those in the non-sarcopenia group (n = 1548). However, no significant inter-group differences were observed regarding wound infections, urinary tract infections, biliary fistulas, or postoperative digestive bleeding. CONCLUSION: Sarcopenia is a common comorbidity in patients undergoing PD. Patients with preoperative sarcopenia have increased rates of complications and mortality, in addition to a poorer overall survival rate and longer hospital stays after PD.

5.
Cancer Chemother Pharmacol ; 93(5): 411-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38191768

RESUMO

BACKGROUND: Artemisinin (ART) and its derivatives are important antimalaria agents and have received increased attention due to their broad biomedical effects, such as anticancer and anti-inflammation activities. Recently, ruthenium-derived complexes have attracted considerable attention as their anticancer potentials were observed in preclinical and clinical studies. METHODS: To explore an innovative approach in colorectal cancer (CRC) management, we synthesized ruthenium-dihydroartemisinin complex (D-Ru), a novel metal-based artemisinin derivative molecule, and investigated its anticancer, anti-inflammation, and adaptive immune regulatory properties. RESULTS: Compared with its parent compound, ART, D-Ru showed stronger antiproliferative effects on the human CRC cell lines HCT-116 and HT-29. The cancer cell inhibition of D-Ru comprised G1 cell cycle arrest via the downregulation of cyclin A and the induction of apoptosis. ART and D-Ru downregulated the expressions of pro-inflammatory cytokines IL-1ß, IL-6, and IL-8. Although ART and D-Ru did not suppress Treg cell differentiation, they significantly inhibited Th1 and Th17 cell differentiation. CONCLUSIONS: Our results demonstrated that D-Ru, a novel ruthenium complexation of ART, remarkably enhanced its parent compound's anticancer action, while the anti-inflammatory potential was not compromised. The molecular mechanisms of action of D-Ru include inhibition of cancer cell growth via cell cycle arrest, induction of apoptosis, and anti-inflammation via regulation of adaptive immunity.


Assuntos
Apoptose , Artemisininas , Neoplasias do Colo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Artemisininas/farmacologia , Artemisininas/química , Apoptose/efeitos dos fármacos , Neoplasias do Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Imunidade Adaptativa/efeitos dos fármacos , Rutênio/química , Rutênio/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Células HCT116 , Células HT29 , Animais , Citocinas/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Camundongos
6.
Anal Methods ; 7(19): 8227-8234, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044377

RESUMO

Much attention has been paid to utilizing polydopamine (PDA) as the stationary phase in open-tubular capillary electrochromatography (OT-CEC) owing to its diverse properties, such as strong adhesion to various surfaces, latent reactivity toward amine and thiol groups and metal ion chelating/redox activities. In this study, a novel open-tubular capillary column coated with polydopamine/gold nanoparticles/thiols (PDA/Au NPs/thiols) has been fabricated based on the multiple properties of PDA for the first time. The capillary inner surface was firstly functionalized with a layer of PDA/Au NPs using the strong adhesive and metal ion redox properties of PDA. Thiols were then introduced and covalently reacted with the hybrid coating based on the Michael addition reaction of PDA and thiols and also Au-S bonds. Moreover, benefitting from the porosity of PDA, layer-by-layer (LBL) self-assembly was further applied to increase the amounts of stationary phase (Au NPs and thiols), which can significantly enhance the separation effectiveness and stability of the coated column. The formation of the PDA/Au NP/thiol coating in the capillary was confirmed and characterized by scanning electron microscopy (SEM), Energy Dispersive Spectrometry (EDS) and AFM (Atomic Force Microscopy). Then the separation effectiveness of the PDA/Au NP/thiol@capillary was verified by the separation of alkylbenzenes, which can achieve baseline separation easily with high column efficiency. In addition, the column showed long lifetime and good stability. The relative standard deviations (RSDs) for intra-day and inter-day repeatability of the PDA/Au NP/thiol@capillary were lower than 5%. Therefore, the layer-by-layer self-assembly of PDA/Au NPs/thiols on the capillary inner-surface could be an effective capillary modification strategy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa