Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(2): 453-460, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403321

RESUMO

This study aimed to investigate the therapeutic effects of Morinda officinalis iridoid glycosides(MOIG) on paw edema and bone loss of rheumatoid arthritis(RA) rats, and analyze its potential mechanism based on ultra-high performance liguid chromatography-guadrupole time-of-flight tandem mass spectrometry(UPLC-Q-TOF-MS) serum metabolomics. RA rats were established by injecting bovin type Ⅱ collagen. The collagen-induced arthritis(CIA) rats were administered drug by gavage for 8 weeks, the arthritic score were used to evaluate the severity of paw edem, serum bone metabolism biochemical parameters were measured by ELISA kits, Masson staining was used to observe the bone microstructure of the femur in CIA rats. UPLC-Q-TOF-MS was used to analyze the alteration of serum metabolite of CIA rats, principal component analysis(PCA) and partial least squares-discriminant analysis(PLS-DA) were used to screen the potential biomarkers, KEGG database analysis were used to construct related metabolic pathways. The results demonstrated that the arthritic score, serum levels of IL-6 and parameters related with bone metabolism including OCN, CTX-Ⅰ, DPD and TRAP were significantly increased, and the ratio of OPG and RANKL was significantly decreased, the microstructure of bone tissue and cartilage were destructed in CIA rats, while MOIG treatments could significantly reduce arthritis score, mitigate the paw edema, reverse the changes of serum biochemical indicators related with bone metabolism, and improve the microstructure of bone tissue and cartilage of CIA rats. The non-targeted metabolomics results showed that 24 altered metabolites were identified in serum of CIA rats; compared with normal group, 13 significantly altered metabolites related to RA were identified in serum of CIA rats, mainly involving alanine, aspartate and glutamate metabolism; compared with CIA model group, MOIG treatment reversed the alteration of 15 differential metabolites, mainly involving into alanine, aspartate and glutamate metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism, valine, leucine and isoleucine biosynthesis. Therefore, MOIG significantly alleviated paw edema, improved the destruction of microstructure of bone and cartilage in CIA rats maybe through involving into the regulation of amino acid metabolism.


Assuntos
Artrite Reumatoide , Morinda , Ratos , Animais , Glicosídeos Iridoides/química , Morinda/química , Cromatografia Líquida de Alta Pressão , Ácido Aspártico , Metabolômica , Artrite Reumatoide/tratamento farmacológico , Edema , Alanina/uso terapêutico , Glutamatos/uso terapêutico , Biomarcadores
2.
BMC Plant Biol ; 23(1): 242, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150815

RESUMO

BACKGROUND: Ophiopogon japonicus, mainly planted in Sichuan (CMD) and Zhejiang (ZMD) province in China, has a lengthy cultivation history. During the long period of domestication, the genetic diversity of cultivated O. japonicus has substantially declined, which will affect the population continuity and evolutionary potential of this species. Therefore, it is necessary to clarify the phylogeography of cultivated O. japonicus to establish a theoretical basis for the utilization and conservation of the genetic resources of O. japonicus. RESULT: The genetic diversity and population structure of 266 O. japonicus individual plants from 23 sampling sites were analyzed based on 4 chloroplast DNA sequences (atpB-rbcL, rpl16, psbA-trnH and rpl20-5'rps12) to identify the effects of domestication on genetic diversity of cultivars and determine their geographic origins. The results showed that cultivated O. japonicus and wild O. japonicus had 4 and 15 haplotypes respectively. The genetic diversity of two cultivars (Hd = 0.35700, π = 0.06667) was much lower than that of the wild populations (Hd = 0.76200, π = 0.20378), and the level of genetic diversity in CMD (Hd = 0.01900, π = 0.00125) was lower than that in ZMD (Hd = 0.06900, π = 0.01096). There was significant difference in genetic differentiation between the cultivated and the wild (FST = 0.82044), especially between the two cultivars (FST = 0.98254). This species showed a pronounced phylogeographical structure (NST > GST, P < 0.05). The phylogenetic tree showed that the genetic difference between CMD and ZMD was not enough to distinguish the cultivars between the two producing areas by using O. amblyphyllus Wang et Dai as an outgroup. In addition, both CMD and ZMD have a closer relationship with wild populations in Sichuan than that in Zhejiang. The results of the TCS network and species distribution model suggested that the wild population TQ located in Sichuan province could serve as the ancestor of cultivated O. japonicus, which was supported by RASP analysis. CONCLUSION: These results suggest that cultivated O. japonicus has experienced dramatic loss of genetic diversity under anthropogenic influence. The genetic differentiation between CMD and ZMD is likely to be influenced by founder effect and strong artificial selection for plant traits. It appears that wild populations in Sichuan area are involved in the origin of not only CMD but also ZMD. In addition, we also raise some suggestions for planning scientific strategies for resource conservation of O. japonicus based on its genetic diversity and population structure.


Assuntos
DNA de Cloroplastos , Ophiopogon , DNA de Cloroplastos/genética , Filogeografia , Filogenia , Ophiopogon/química , Ophiopogon/genética , Haplótipos/genética , Variação Genética
3.
Chem Biodivers ; 20(3): e202201054, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36790137

RESUMO

Eucommia ulmoides Oliver is a dioecious plant, which plays an important role in traditional Chinese medicine. However, there has not yet been any research on male and female E. ulmoides. The UPLC fingerprints and OPLS-DA approach were able to quickly and easily identify and quantify E. ulmoides and differentiate between the male and female fingerprints. In this study, we optimized the UPLC conditions and analyzed them to investigate fingerprints of twenty-four extracts of Eucommiae Cortex (EC) and twenty-four extracts of Eucommiae Folium (EF) under optimal conditions. It was demonstrated that thirteen and twelve substances were possible chemical markers for EC and EF male and female discrimination and that the level of these markers - chlorogenic acid and protocatechuic acid - was many times higher in male than in female. This approach offered a reference for quality control and precise treatment of male and female E. ulmoides in the clinic.


Assuntos
Medicamentos de Ervas Chinesas , Eucommiaceae , Medicamentos de Ervas Chinesas/química , Eucommiaceae/química , Medicina Tradicional Chinesa , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão/métodos
4.
Zhongguo Zhong Yao Za Zhi ; 48(23): 6294-6306, 2023 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-38211986

RESUMO

Excessive and persistent inflammatory responses are a potential pathological condition that can lead to diseases of various systems, including nervous, respiratory, digestive, circulatory, and endocrine systems. Cannabinoid type 2 receptor(CB2R) belongs to the G protein-coupled receptor family and is widely distributed in immune cells, peripheral tissues, and the central nervous system. It plays a role in inflammatory responses under various pathological conditions. The down-regulation of CB2R activity is an important marker of inflammation and and CB2R modulators have been shown to have anti-inflammatory effects. This study explored the relationship between CB2R and inflammatory responses, delved into its regulatory mechanisms in inflammatory diseases, and summarized the research progress on CB2R modulators from plants other than cannabis, including plant extracts and monomeric compounds, in exerting anti-inflammatory effects. The aim is to provide new insights into the prevention and treatment of inflammatory diseases.


Assuntos
Moduladores de Receptores de Canabinoides , Canabinoides , Moduladores de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Receptores de Canabinoides , Canabinoides/farmacologia , Anti-Inflamatórios/farmacologia
5.
Arch Microbiol ; 204(5): 254, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35412082

RESUMO

A novel bacterium of the genus Streptomyces, designated TRM S81-3T, was isolated from soil in cotton fields of Xinjiang, China. Comparative 16S rRNA gene sequence analysis indicated that strain TRM S81-3T is most closely related to Streptomyces viridiviolaceus NBRC 13359T (98.9% sequence similarity); however, the average nucleotide identity (ANI) between strains TRM S81-3T and S. viridiviolaceus NBRC 13359T is relatively low (91.6%). Strain TRM S81-3T possesses LL-diaminopimelic acid as the diagnostic cell-wall diamino acid, MK-9(H4), MK-9(H6), and MK-9(H10) as the major menaquinones, and polar lipids including diphosphatidylglycerol (DPG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylmethyl ethanolamine (PME), phosphotidylinositolone (PI), phospholipid of unknown structure containing glucosamine (NPG), and two unidentified phospholipids (PLs).The major fatty acids are iso-C16:0, anteiso-C15:0, anteiso-C17:1 ω9c, anteiso-C17:0, iso-C15:0, and C14:0. The genomic DNA G + C content is 72.1%. Based on the evidence from this polyphasic study, strain TRM S81-3T represents a novel species of Streptomyces, for which the name Streptomyces grisecoloratus is proposed. The type strain is TRM S81-3T (= CCTCC AA 2020002T = LMG 31942T).


Assuntos
Solo , Streptomyces , DNA Bacteriano/genética , Ácidos Graxos/química , Gossypium , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
6.
Biomed Chromatogr ; 36(10): e5447, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35833910

RESUMO

Natural products (NP) are an important source of bioactive compounds. Considering their complex matrix effects, the development of suitable methodologies for the quick identification and analysis of active substances in NPs played a significant role in controlling their quality and discovering new drugs. In recent years, the technology of immobilized biomembrane has attracted increasing attention, due to its advantages such as multitarget efficiency, accuracy, and/or time-saving compared with traditional activity-guided separation and ligand fishing methods. This article provides a systematic review of the latest advances in screening technologies based on biomembrane in the field of NPs. It includes detailed discussions on these technologies, including cell membrane chromatography, artificial membrane chromatography, cell membrane fishing, living cell fishing methods, and their applications in screening various active molecules from NPs. Their limitations and future development prospects are further discussed.


Assuntos
Produtos Biológicos , Produtos Biológicos/análise , Cromatografia/métodos , Ligantes , Membranas Artificiais
7.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163968

RESUMO

As cannabinoid CB2 receptors (CB2R) possess various pharmacological effects-including anti-epilepsy, analgesia, anti-inflammation, anti-fibrosis, and regulation of bone metabolism-without the psychoactive side effects induced by cannabinoid CB1R activation, they have become the focus of research and development of new target drugs in recent years. The present study was intended to (1) establish a double luciferase screening system for a CB2R modulator; (2) validate the agonistic activities of the screened compounds on CB2R by determining cAMP accumulation using HEK293 cells that are stably expressing CB2R; (3) predict the binding affinity between ligands and CB2 receptors and characterize the binding modes using molecular docking; (4) analyze the CB2 receptors-ligand complex stability, conformational behavior, and interaction using molecular dynamics; and (5) evaluate the regulatory effects of the screened compounds on bone metabolism in osteoblasts and osteoclasts. The results demonstrated that the screening system had good stability and was able to screen cannabinoid CB2R modulators from botanical compounds. Altogether, nine CB2R agonists were identified by screening from 69 botanical compounds, and these CB2R agonists exhibited remarkable inhibitory effects on cAMP accumulation and good affinity to CB2R, as evidenced by the molecular docking and molecular dynamics. Five of the nine CB2R agonists could stimulate osteoblastic bone formation and inhibit osteoclastic bone resorption. All these findings may provide useful clues for the development of novel anti-osteoporotic drugs and help elucidate the mechanism underlying the biological activities of CB2R agonists identified from the botanical materials.


Assuntos
Agonistas de Receptores de Canabinoides/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Receptor CB2 de Canabinoide/agonistas , Animais , Anti-Inflamatórios/farmacologia , Agonistas de Receptores de Canabinoides/química , Moduladores de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , China , Células HEK293 , Humanos , Ligantes , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Células RAW 264.7 , Receptor CB2 de Canabinoide/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-33269996

RESUMO

A novel actinobacterium, designated TRM 44567T, was isolated from cotton soil in Xinjiang Uygur Autonomous Region, northwest PR China. Growth occurred at 16-45 °C, pH 5.0-9.0, and 0-7 % (w/v) NaCl, with optimum growth at 37 °C, pH 7.0-8.0 and 1 % (w/v) NaCl, respectively. Comparative 16S rRNA gene sequence analysis indicated that strain TRM 44567T was phylogenetically most closely related to Streptomyces chromofuscus NBRC 12851T (98.48 % sequence similarity); however, the average nucleotide identity between strain TRM 44567T and S. chromofuscus NBRC 12851T was only 83.77 %. Strain TRM 44567T possessed ll-diaminopimelic acid as the diagnostic cell-wall diamino acid. The predominant menaquinones were MK-9(H10), MK-9(H6) and MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylinositol and phosphatidylinositol mannoside. The major fatty acids were iso-C16 : 0, C16 : 0, anteiso-C15 : 0, anteiso-C17 : 0, iso-C14 : 0 and iso-C15 : 0. The genomic DNA G+C content was 70.8 mol%. Strain TRM 44567T represents a novel species of the genus Streptomyces, for which the name Streptomyces gossypiisoli sp. nov. is proposed. The type strain is TRM 44567T (=KCTC 39957 T=CCTCC AA 2017011T).


Assuntos
Gossypium , Filogenia , Microbiologia do Solo , Streptomyces/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomyces/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
9.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3824-3831, 2021 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-34472255

RESUMO

The present study aimed to provide the protection strategies for wild germplasm resources of original plants of Viticis Fructus and a theoretical basis for the sustainable use of Viticis Fructus. The genetic diversity and genetic structures of the 232 indivi-duals in 19 populations of Vitex rotundifolia and V. trifolia were analyzed by eight SSR markers with tools such as Popgene32, GenAlex 6.502, and STRUCTURE. Bottleneck effect was detected for the population with more than 10 individuals. The results indicated that 42 and 26 alleles were detected from the populations of V. rotundifolia and V. trifolia, respectively, with average expected heterozygo-sities of 0.448 6 and 0.583 9, which are indicative of low genetic diversity. AMOVA revealed the obvious genetic variation of V. rotundifolia and V. trifolia within population(84.43%, P<0.01; 60.37%, P<0.01). Furthermore, in eight SSR loci, six from V. rotundifolia populations and two from V. trifolia populations failed to meet Hardy-Weinberg equilibrium expectations(P<0.05), which confirmed that the populations experienced bottleneck effect. As assessed by Mantel test, geographical distance posed slight impacts on the genetic variation between the populations of V. rotundifolia and V. trifolia. Principal component analysis(PCA) and STRUCTURE analysis demonstrated evident introgression of genes among various populations. The original plants of Viticis Fructus were confirmed low in genetic diversity and genetic differentiation level. Therefore, the protection of wild resources of original plants of Viticis Fructus should be strengthened to ensure its sustainable use.


Assuntos
Variação Genética , Vitex , Alelos , Frutas/genética , Geografia , Repetições de Microssatélites , Vitex/genética
10.
Zhongguo Zhong Yao Za Zhi ; 46(14): 3540-3550, 2021 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-34402276

RESUMO

Cannabinoid receptor type 2( CB2 R),a member of the G protein-coupled receptor( GPCR) superfamily,has a variety of biological activities,such as regulating pain response,resisting inflammation and fibrosis,and mediating bone metabolism. Some CB2 R regulators exhibit a good regulatory effect on bone metabolism. Cannabinoids in Cannabis sativa can cause psychoactive effects despite various pharmacological actions they exerted by targeting CB2 R. Therefore,it is of great significance to discover CB2 R regulators in non-Cannabis plants for finding new lead compounds without psychoactive effects and elucidating the action mechanism of plant drugs. The present study clarifies the discovery,structure,and physiological functions of CB2 R,especially its regulatory effects on bone metabolism,summarized CB2 R regulators extracted from non-Cannabis plants,and systematically analyzes the regulatory effects of CB2 R regulators on bone metabolism in animals,osteoblasts,and osteoclasts,to provide a scientific basis for the discovery of new CB2 R regulators and the development of anti-osteoporotic drugs.


Assuntos
Canabinoides , Cannabis , Animais , Canabinoides/farmacologia , Osteoblastos , Osteoclastos , Receptores de Canabinoides
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa