Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 72-78, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297173

RESUMO

Recent breakthroughs in fibre technology have enabled the assembly of functional materials with intimate interfaces into a single fibre with specific geometries1-11, delivering diverse functionalities over a large area, for example, serving as sensors, actuators, energy harvesting and storage, display, and healthcare apparatus12-17. As semiconductors are the critical component that governs device performance, the selection, control and engineering of semiconductors inside fibres are the key pathways to enabling high-performance functional fibres. However, owing to stress development and capillary instability in the high-yield fibre thermal drawing, both cracks and deformations in the semiconductor cores considerably affect the performance of these fibres. Here we report a mechanical design to achieve ultralong, fracture-free and perturbation-free semiconductor fibres, guided by a study on stress development and capillary instability at three stages of the fibre formation: the viscous flow, the core crystallization and the subsequent cooling stage. Then, the exposed semiconductor wires can be integrated into a single flexible fibre with well-defined interfaces with metal electrodes, thereby achieving optoelectronic fibres and large-scale optoelectronic fabrics. This work provides fundamental insights into extreme mechanics and fluid dynamics with geometries that are inaccessible in traditional platforms, essentially addressing the increasing demand for flexible and wearable optoelectronics.

2.
Proc Natl Acad Sci U S A ; 121(33): e2407971121, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39110725

RESUMO

Artificial neuromorphic devices can emulate dendric integration, axonal parallel transmission, along with superior energy efficiency in facilitating efficient information processing, offering enormous potential for wearable electronics. However, integrating such circuits into textiles to achieve biomimetic information perception, processing, and control motion feedback remains a formidable challenge. Here, we engineer a quasi-solid-state iontronic synapse fiber (ISF) comprising photoresponsive TiO2, ion storage Co-MoS2, and an ion transport layer. The resulting ISF achieves inherent short-term synaptic plasticity, femtojoule-range energy consumption, and the ability to transduce chemical/optical signals. Multiple ISFs are interwoven into a synthetic neural fabric, allowing the simultaneous propagation of distinct optical signals for transmitting parallel information. Importantly, IFSs with multiple input electrodes exhibit spatiotemporal information integration. As a proof of concept, a textile-based multiplexing neuromorphic sensorimotor system is constructed to connect synaptic fibers with artificial fiber muscles, enabling preneuronal sensing information integration, parallel transmission, and postneuronal information output to control the coordinated motor of fiber muscles. The proposed fiber system holds enormous promise in wearable electronics, soft robotics, and biomedical engineering.


Assuntos
Sinapses , Têxteis , Sinapses/fisiologia , Dispositivos Eletrônicos Vestíveis , Biomimética/métodos , Biomimética/instrumentação , Humanos , Plasticidade Neuronal/fisiologia
3.
Nano Lett ; 24(33): 10265-10274, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116304

RESUMO

Artificial sensory afferent nerves that emulate receptor nanochannel perception and synaptic ionic information processing in chemical environments are highly desirable for bioelectronics. However, challenges persist in achieving life-like nanoscale conformal contact, agile multimodal sensing response, and synaptic feedback with ions. Here, a precisely tuned phase transition poly(N-isopropylacrylamide) (PNIPAM) hydrogel is introduced through the water molecule reservoir strategy. The resulting hydrogel with strongly cross-linked networks exhibits excellent mechanical performance (∼2000% elongation) and robust adhesive strength. Importantly, the hydrogel's enhanced ionic conductance and heterogeneous structure of the temperature-sensitive component enable highly sensitive strain information perception (GFmax = 7.94, response time ∼ 87 ms), temperature information perception (TCRmax = -1.974%/°C, response time ∼ 270 ms), and low energy consumption synaptic plasticity (42.2 fJ/spike). As a demonstration, a neuromorphic sensing-synaptic system is constructed integrating iontronic strain/temperature sensors with fiber synapses for real-time information sensing, discrimination, and feedback. This work holds enormous potential in bioinspired robotics and bioelectronics.


Assuntos
Resinas Acrílicas , Hidrogéis , Hidrogéis/química , Resinas Acrílicas/química , Temperatura , Sinapses/fisiologia , Adesivos/química
4.
Small ; : e2403660, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004850

RESUMO

All-solid-state lithium metal batteries (ASSLMBs) have emerged as the most promising next-generation energy storage devices. However, the unsatisfactory ionic conductivity of solid electrolytes at room temperature has impeded the advancement of solid-state batteries. In this work, a multifunctional composite solid electrolyte (CSE) is developed by incorporating boron nitride nanotubes (BNNTs) into polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP). BNNTs, with a high aspect ratio, trigger the dissociation of Li salts, thus generating a greater population of mobile Li+, and establishing long-distance Li+ transport pathways. PVDF-HFP/BNNT exhibits a high ionic conductivity of 8.0 × 10-4 S cm-1 at room temperature and a Li+ transference number of 0.60. Moreover, a Li//Li symmetric cell based on PVDF-HFP/BNNT demonstrates robust cyclic performance for 3400 h at a current density of 0.2 mA cm-2. The ASSLMB formed from the assembly of PVDF-HFP/BNNT with LiFePO4 and Li exhibits a capacity retention of 93.2% after 850 cycles at 0.5C and 25 °C. The high-voltage all-solid-state LiCoO2/Li cell based on PVDF-HFP/BNNT also exhibits excellent cyclic performance, maintaining a capacity retention of 96.4% after 400 cycles at 1C and 25 °C. Furthermore, the introduction of BNNTs is shown to enhance the thermal conductivity and flame retardancy of the CSE.

5.
Nanomicro Lett ; 16(1): 230, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942958

RESUMO

The poor interfacial stability not only deteriorates fibre lithium-ion batteries (FLBs) performance but also impacts their scalable applications. To efficiently address these challenges, Prof. Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study. The resultant FLBs can be woven into different-sized powering textiles, providing a high energy density output of 128 Wh kg-1 and simultaneously demonstrating good durability even under harsh conditions. Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes, and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future.

6.
Adv Sci (Weinh) ; 11(24): e2400785, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682447

RESUMO

The development of soft electronics and soft fiber devices has significantly advanced flexible and wearable technology. However, they still face the risk of damage when exposed to sharp objects in real-life applications. Taking inspiration from nature, self-healable materials that can restore their physical properties after external damage offer a solution to this problem. Nevertheless, large-scale production of self-healable fibers is currently constrained. To address this limitation, this study leverages the thermal drawing technique to create elastic and stretchable self-healable thermoplastic polyurethane (STPU) fibers, enabling cost-effective mass production of such functional fibers. Furthermore, despite substantial research into the mechanisms of self-healable materials, quantifying their healing speed and time poses a persistent challenge. Thus, transmission spectra are employed as a monitoring tool to observe the real-time self-healing process, facilitating an in-depth investigation into the healing kinetics and efficiency. The versatility of the fabricated self-healable fiber extends to its ability to be doped with a wide range of functional materials, including dye molecules and magnetic microparticles, which enables modular assembly to develop distributed strain sensors and soft actuators. These achievements highlight the potential applications of self-healable fibers that seamlessly integrate with daily lives and open up new possibilities in various industries.

7.
Adv Sci (Weinh) ; : e2401109, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970168

RESUMO

Flexible electro-optical dual-mode sensor fibers with capability of the perceiving and converting mechanical stimuli into digital-visual signals show good prospects in smart human-machine interaction interfaces. However, heavy mass, low stretchability, and lack of non-contact sensing function seriously impede their practical application in wearable electronics. To address these challenges, a stretchable and self-powered mechanoluminescent triboelectric nanogenerator fiber (MLTENGF) based on lightweight carbon nanotube fiber is successfully constructed. Taking advantage of their mechanoluminescent-triboelectric synergistic effect, the well-designed MLTENGF delivers an excellent enhancement electrical signal of 200% and an evident optical signal whether on land or underwater. More encouragingly, the MLTENGF device possesses outstanding stability with almost unchanged sensitivity after stretching for 200%. Furthermore, an extraordinary non-contact sensing capability with a detection distance of up to 35 cm is achieved for the MLTENGF. As application demonstrations, MLTENGFs can be used for home security monitoring, intelligent zither, traffic vehicle collision avoidance, and underwater communication. Thus, this work accelerates the development of wearable electro-optical textile electronics for smart human-machine interaction interfaces.

8.
Adv Mater ; 36(32): e2406093, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865651

RESUMO

Aqueous Zn-ion batteries featuring with intrinsic safety and low cost are highly desirable for large-scale energy storage, but the unstable Zn-metal anode resulting from uncontrollable dendrite growth and grievous hydrogen evolution reaction (HER) shortens their cycle life. Herein, a feasible in situ self-reconfiguration strategy is developed to generate triple-gradient poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (PDDA-TFSI)-Zn5(OH)8Cl2·H2O-Sn (PT-ZHC-Sn) artificial layer. The resulting triple-gradient interface consists of the spherical top layer PT with cation confinement and H2O inhibition, the dense intermediate layer ZHC nanosheet with Zn2+ conduction and electron shielding, and the bottom layer Znophilic Sn metal. The well-designed triple-gradient artificial interfacial layer synergistically facilitates rapid Zn2+ diffusion to regulate uniform Zn deposition and accelerates the desolvation process while suppressing HER. Consequently, the PT-ZHC-Sn@Zn symmetric cell achieves an ultralong lifespan over 6500 h at 0.5 mA cm-2 for 0.5 mAh cm-2. Furthermore, a full battery coupling with MnO2 cathode exhibits a 17.2% increase in capacity retention compared with bare Zn anode after 1000 cycles. The in situ self-reconfiguration strategy is also applied to prepare triple-gradient PT-ZHC-In, and the assembled Zn//Cu cell operates steadily for over 8400 h while maintaining Coulombic efficiency of 99.6%. This work paves the way to designing multicomponent gradient interface for stable Zn-metal anodes.

9.
Adv Mater ; 36(21): e2313772, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38402409

RESUMO

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

10.
Sci Adv ; 10(29): eado7826, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028805

RESUMO

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 µm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter-1 for Zn-MnO2 batteries and ~107 Wh liter-1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

11.
Innovation (Camb) ; 5(5): 100676, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39170943
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa