Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 149: 109595, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692381

RESUMO

This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-ß was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.


Assuntos
Ração Animal , Bacillus , Dieta , Hepatopâncreas , Intestinos , Penaeidae , Probióticos , Animais , Penaeidae/imunologia , Penaeidae/crescimento & desenvolvimento , Penaeidae/microbiologia , Ração Animal/análise , Dieta/veterinária , Hepatopâncreas/imunologia , Hepatopâncreas/metabolismo , Probióticos/administração & dosagem , Probióticos/farmacologia , Suplementos Nutricionais/análise , Fermentação , Distribuição Aleatória , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Relação Dose-Resposta a Droga
2.
Fish Shellfish Immunol ; 135: 108681, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36921883

RESUMO

Postbiotics are an emerging research interest in recent years, which shows that metabolites, lysate extracts, cell wall components and even culture supernatants of probiotics can also exhibit significant prebiotic effects. In this study postbiotic stress worry free concentration® (SWFC) were prepared from the composition of culture supernatant of Cetobacterium somerae and Lactococcus lactis. The positive effects of SWFC supplemented diets on the growth performance, skin mucus, liver and gut health, and intestinal microbiota profile of Cyprinus carpio fed with high fat diets were investigated. 180 C. carpio with an average body weight of (3.01 ± 0.01) g were selected and randomly divided into three groups. They were fed with one of the three experimental diets supplemented with SWFC of 0 (control), 0.2 and 0.3 g/kg for 98 days, afterwards indexes were detected. The results revealed that, addition of SWFC had no significant effect on growth performance of C. carpio, while it can improve the health of the fish remarkably. In addition, SWFC improved mucosal C3, T-AOC, SOD activities, and decreased lipid peroxidation product MDA level, which were notably better than those in the control group (P < 0.05). In terms of the liver health systems, C. carpio fed on the diet supplemented with 0.2 g/kg of SWFC, showed significant improvement of the liver injured by HFD and reduce the contents of serum ALT and AST, and liver TAG (P < 0.05; P < 0.01). The expression of inflammation-related and lipid synthesis genes revealed that SWFC0.2 group could noteworthy enhance antioxidant capacity, reduced the expression of pro-inflammatory factors (TNF-α, IL-1ß) and lipid synthesis genes (ACC, FAS, PPAR-ß, PPAR-γ), and up-regulated the expression of anti-inflammatory factors (TGF-ß). Additionally, intestinal morphology arose inflammatory cell infiltration, while intestinal integrity was better in SWFC groups compared with the control. Furthermore, the contents of serum LPS and LBP were remarkably lower in the SWFC0.2 group compared with the control (P < 0.01). The mRNA expression of genes related to gut health indicated that SWFC supplementation noteworthy up-regulated the expression of antioxidant (Nrf2, CAT, GPX), immune (Hepcidin, IL-10) and tight junction protein-related (ZO-1, Occludin). Simultaneously, the results of GF-zebrafish showed that the relative expression of anti-inflammatory genes (IL-1ß, TGF-ß) and antioxidant related genes (Nrf2, HO-1) were significantly up-regulated in SWFC groups. Data on intestinal microbiota profile verified that, at the phylum level, the abundance of Fusobacteria was remarkably elevated in the SWFC groups (P < 0.05), whereas the abundance of Firmicutes was declined noteworthy in SWFC0.2 and SWFC0.3 compared to the control group (P < 0.05; P < 0.01) respectively. At the genus level, the abundance of Cetobacterium in the SWFC groups were notably higher than those in the control group (P < 0.05), while the Vibrio content in the SWFC groups was significantly decreased (P < 0.05). PCoA result indicated that the intestinal microflora of SWFC0.2 group was abundant and diverse. Our results elucidate that dietary supplementation of SWFC protects C. carpio from HFD induced inflammatory response and oxidative stress, ameliorate skin mucus, liver and gut health, and improve the gut microbiota balance. Therefore, SWFC could be considered as an improving-fish-health additive, when supplemented to aquatic animal feed. With regards to how SWFC regulates the immunity and inflammatory responses and which signal transductions are involved remains unclear and more scientific evidences are needed to address these issues.


Assuntos
Carpas , Microbioma Gastrointestinal , Animais , Carpas/metabolismo , Dieta Hiperlipídica , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2 , Peixe-Zebra/metabolismo , Suplementos Nutricionais/análise , Dieta/veterinária , Fígado/metabolismo , Fator de Crescimento Transformador beta , Lipídeos , Ração Animal/análise
3.
Fish Shellfish Immunol ; 123: 75-84, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35240294

RESUMO

The purpose of the study was to investigate the effects of Eucommia ulmoides leaf extract (ELE) on the common occurrence of liver steatosis, chronic inflammation, oxidative stress, disturbance of gut microbiota, and disease susceptibility in high-fat diet-fed channel catfish. Channel catfish fed three diets, including a high-fat diet (11% crude fat) and ELE-supplemented diets containing 1‰ or 2‰ ELE for 4 weeks. The results showed the contents of liver triacylglycerol of 1‰ and 2‰ ELE groups were reduced, and ELE treatments decreased the expression of lipogenesis related genes (srebp-1c, pparγ, and acc-1), and increased the expression of lipolysis related genes (pparα). In addition, the supplementation of ELE improved the inflammatory response of the liver and intestine. ELE could improve the destruction of intestinal morphology structure and increase the expression level of hif-1a and tight junction proteins (Occludin, Claudin2, Claudin15). 2‰ ELE significantly enhanced the antioxidant capacity of intestine by increasing the activity of SOD enzyme. Moreover, the supplement of ELE significantly increased the abundance of Cetobacterium and Romboutsia (p < 0.05). Compared with the control group, the expression of immune factor nf-κb had a significant decrease, and il-1ß showed a tendency to decrease in the ELE supplement groups after pathogenic bacteria challenge. In conclusion, the ELE alleviated fatty liver disease and inflammation response, improved the oxidative capacity and physiological structure of intestine, and improved the structure of intestinal microbiota and disease resistance in HFD-fed channel catfish.


Assuntos
Eucommiaceae , Microbioma Gastrointestinal , Ictaluridae , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica , Resistência à Doença , Eucommiaceae/química , Eucommiaceae/metabolismo , Inflamação/metabolismo , Inflamação/veterinária , Intestinos , Metabolismo dos Lipídeos , Fígado/metabolismo , Extratos Vegetais/farmacologia
4.
Fish Shellfish Immunol ; 131: 1182-1191, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36403702

RESUMO

As a functional feed additive, yeast cultures are rich in nucleotides, and adding extra nuclease can significantly increase the content of nucleotides in yeast culture. In this experiment, the effects on growth, epidermal mucus, liver and intestinal health of zebrafish were evaluated by supplementing the yeast culture or nuclease-treated yeast culture with a high-fat diet (HFD). One-month-old zebrafish were fed four diets: normal diet (NORM), HFD, yeast culture diet (YC), and nuclease-treated yeast culture diet (YC (N)) for three weeks. Results showed that the complement 4 activity of the epidermal mucus in YC (N) group was significantly higher than those in HFD and YC groups (P < 0.05). The YC and YC (N) significantly reduced the content of hepatic triglyceride caused by HFD (P < 0.05). Moreover, compared with the YC group, the YC (N) significantly increased the expression of lipolysis genes, such as PPARα, PGC1α, ACOX3 (P < 0.05). Compared with the YC group, the YC (N) group significantly increased the expression of liver pro-inflammatory factors TNFα, IL-6, IL-1ß and anti-inflammatory factors TGFß, IL-10 (P < 0.05). The diet YC and YC (N) significantly improved the height of the intestinal villus (P < 0.05). Compared with the HFD group, the YC (N) group significantly increased the expression of intestinal pro-inflammatory factors TNFα, IL-6 and anti-inflammatory factors TGFß, IL-10 (P < 0.05). The YC (N) group significantly decreased the abundance of intestinal Proteobacteria and Acinetobacter, and increased the abundance of intestinal Actinobacteria, Mycobacterium and Rhodobacter (P < 0.05). In conclusion, compared with the supplement of yeast culture, nuclease treated yeast culture can further alleviate the adverse effects of HFD on liver and intestinal health, and be used as feed additives for the nutritional and immune regulation of fish.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Dieta Hiperlipídica/efeitos adversos , Peixe-Zebra/metabolismo , Metabolismo dos Lipídeos , Saccharomyces cerevisiae/metabolismo , Interleucina-10/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fígado/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Nucleotídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
5.
Fish Shellfish Immunol ; 125: 220-229, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35569779

RESUMO

The aim of the present study was to investigate the partial replacement of fish meal by Saccharomyces cerevisiae culture on growth performance, immunity, composition and function of intestinal microbiota and disease resistance in channel catfish (Ictalurus punctatus). Two equal nitrogen and energy diets were prepared including a basal diet (containing 10% fish meal, Control) and an experimental diet (replacing 20% of the fish meal of the basal diet with yeast culture, RFM). Channel catfish were fed with the diets for 12 weeks. The results showed that weight gain and condition factor were significantly increased, and FCR was significantly decreased in RFM group (P < 0.05). The gene expression of intestinal HIF1α was significantly increased in RFM group (P < 0.05), while the expressions of NF-κB in the intestine and liver were significantly decreased (P < 0.05). The relative abundance of Firmicutes tended to increase, and the Turicibacter had an upward trend (0.05 < P < 0.2). In addition, the survival rate of channel catfish was significantly increased in RFM group after challenged with Aeromonas veronii Hm091 and Aeromonas hydrophila NJ-1 (P < 0.05). Compared with intestinal microbiota of channel catfish of control group, intestinal microbiota of channel catfish of RFM group significantly increased the expression of HIF1α, and decreased the expression of IL-1ß and TNF-α (P < 0.05) in germ-free zebrafish. Intestinal microbiota induced by RFM diet also significantly increased disease resistance to Aeromonas veronii Hm091 and Aeromonas hydrophila NJ-1. In conclusion, replacement of fish meal by the yeast culture improved the growth, immunity and disease resistance of channel catfish, and intestinal microbiota of channel catfish induced by the yeast culture played a critical role in these effects.


Assuntos
Doenças dos Peixes , Microbioma Gastrointestinal , Ictaluridae , Aeromonas hydrophila , Ração Animal/análise , Animais , Dieta/veterinária , Resistência à Doença , Ictaluridae/genética , Saccharomyces cerevisiae , Peixe-Zebra
6.
Org Lett ; 25(31): 5768-5773, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37534925

RESUMO

A photoinduced charge transfer complex (CTC)-enabled photoreduction of carborane phosphonium salts for the cage carbon (hetero)arylation of carboranes was developed. It offers a convenient approach for introducing a wide range of aryl and heteroaryl groups, such as pyrroles, thiophenes, indoles, thianaphthenes, benzofurans, pyridines, and benzenes, into carboranes. This strategy offers operational simplicity, mild reaction conditions, and a broad substrate scope, making it highly advantageous.

7.
Anim Nutr ; 14: 32-42, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37234949

RESUMO

Fish gut barrier damage under intensive culture model is a significant concern for aquaculture industry. This study aimed to investigate the effects of bile acids (BAs) on gut barriers in Micropterus salmoides. A germ-free (GF) zebrafish model was employed to elucidate the effects of the direct stimulation of BAs and the indirect regulations mediated by the gut microbiota on gut barrier functions. Four diets were formulated with BAs supplemented at 0, 150, 300 and 450 mg/kg, and these 4 diets were defined as control, BA150, BA300 and BA450, respectively. After 5 weeks of feeding experiment, the survival rate of fish fed with BA300 diet was increased (P < 0.05). Histological analysis revealed an improvement of gut structural integrity in the BA150 and BA300 groups. Compared with the control group, the expression of genes related to chemical barrier (mucin, lysozyme and complement 1) and physical barrier (occludin and claudin-4) was increased in the BA150 and BA300 groups (P < 0.05), and the expression of genes related to immunological barrier (interleukin [IL]-6, tumor growth factor ß, IL-10, macrophage galactose-type lectin and immunoglobulin M [IgM]) was significantly increased in the BA300 group (P < 0.05), but the expression of genes related to chemical barrier (hepcidin) and immunological barrier (IL-1ß, tumor necrosis factor-α, IL-6 and arginase) was significantly decreased in the BA450 group (P < 0.05). Gut microbiota composition analysis revealed that the abundance of Firmicutes was augmented prominently in the BA150 and BA300 groups (P < 0.05), while that of Actinobacteriota and Proteobacteria showed a downward trend in the BA150 and BA300 groups (P > 0.05). The results of the gut microbiota transferring experiment demonstrated an upregulation of gut barrier-related genes, including immunoglobulin Z/T (IgZ/T), IL-6, IL-1ß and IL-10, by the gut microbiota transferred from the BA300 group compared with the control (P < 0.05). Feeding the BA300 diet directly to GF zebrafish resulted in enhanced expression of IgM, IgZ/T, lysozyme, occludin-2, IL-6 and IL-10 (P < 0.05). In conclusion, BAs can improve the gut barriers of fish through both direct and indirect effects mediated by the gut microbiota.

8.
Front Nutr ; 9: 870343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571918

RESUMO

Being highly unsaturated, n-3 long-chain polyunsaturated fatty acids (LC-PUFAs) are prone to lipid peroxidation. In this study, zebrafish were fed with low-fat diet (LFD), high-fat diet (HFD), or 2% DHA-supplemented HFD (HFDHA2.0). To study the possible negative effects of the high level of dietary DHA, growth rates, blood chemistry, liver histology, hepatic oxidative stress, apoptosis, and inflammatory processes were assessed. The cell studies were used to quantify the effects of DHA and antioxidant on cellular lipid peroxidation and viability. The possible interaction between gut microbiota and zebrafish host was evaluated in vitro. HFDHA2.0 had no effect on hepatic lipid level but induced liver injury, oxidative stress, and hepatocellular apoptosis, including intrinsic and death receptor-induced apoptosis. Besides, the inclusion of 2% DHA in HFD increased the abundance of Proteobacteria in gut microbiota and serum endotoxin level. In the zebrafish liver cell model, DHA activated intrinsic apoptosis while the antioxidant 4-hydroxy-Tempo (tempo) inhibited the pro-apoptotic negative effects of DHA. The apoptosis induced by lipopolysaccharide (LPS) was unaffected by the addition of tempo. In conclusion, the excess DHA supplementation generates hepatocellular apoptosis-related injury to the liver. The processes might propagate along at least two routes, involving lipid peroxidation and gut microbiota-generated LPS.

9.
Front Nutr ; 9: 894278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685883

RESUMO

Succinate is widely used in the food and feed industry as an acidulant, flavoring additive, and antimicrobial agent. This study investigated the effects of dietary succinate on growth, energy budget, nutritional metabolism, protein succinylation, and gut microbiota composition of zebrafish. Zebrafish were fed a control-check (0% succinate) or four succinate-supplemented diets (0.05, 0.10, 0.15, and 0.2%) for 4 weeks. The results showed that dietary succinate at the 0.15% additive amount (S0.15) can optimally promote weight gain and feed intake. Whole body protein, fat, and energy deposition increased in the S0.15 group. Fasting plasma glucose level decreased in fish fed the S0.15 diet, along with improved glucose tolerance. Lipid synthesis in the intestine, liver, and muscle increased with S0.15 feeding. Diet with 0.15% succinate inhibited intestinal gluconeogenesis but promoted hepatic gluconeogenesis. Glycogen synthesis increased in the liver and muscle of S0.15-fed fish. Glycolysis was increased in the muscle of S0.15-fed fish. In addition, 0.15% succinate-supplemented diet inhibited protein degradation in the intestine, liver, and muscle. Interestingly, different protein succinylation patterns in the intestine and liver were observed in fish fed the S0.15 diet. Intestinal proteins with increased succinylation levels were enriched in the tricarboxylic acid cycle while proteins with decreased succinylation levels were enriched in pathways related to fatty acid and amino acid degradation. Hepatic proteins with increased succinylation levels were enriched in oxidative phosphorylation while proteins with decreased succinylation levels were enriched in the processes of protein processing and transport in the endoplasmic reticulum. Finally, fish fed the S0.15 diet had a higher abundance of Proteobacteria but a lower abundance of Fusobacteria and Cetobacterium. In conclusion, dietary succinate could promote growth and feed intake, promote lipid anabolism, improve glucose homeostasis, and spare protein. The effects of succinate on nutritional metabolism are associated with alterations in the levels of metabolic intermediates, transcriptional regulation, and protein succinylation levels. However, hepatic fat accumulation and gut microbiota dysbiosis induced by dietary succinate suggest potential risks of succinate application as a feed additive for fish. This study would be beneficial in understanding the application of succinate as an aquatic feed additive.

10.
Front Nutr ; 8: 797510, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35145984

RESUMO

With the widespread use of high-fat diets (HFDs) in aquaculture, fatty livers are frequently observed in many fish species. The aim of this study was to investigate if docosahexaenoic acid (DHA) could be used to reduce the fatty liver in zebrafish generated by a 16% soybean oil-HFD over 2 weeks of feeding. The DHA was added to iso-lipidic HFD at 0.5, 1.0, and 2.0% of diet. Supplementation of DHA reduced growth and feed efficiency in a dose dependent manner being lowest in the HFDHA2.0 group. Hepatic triglyceride (TG) in zebrafish fed 0.5% DHA-supplemented HFD (HFDHA0.5) was significantly lower than in the HFD control. Transcriptional analyses of hepatic genes showed that lipid synthesis was reduced, while fatty acid ß-oxidation was increased in the HFDHA0.5 group. Furthermore, the expression of Cyclin D1 in liver of zebrafish fed HFDHA0.5 was significantly reduced compared to that in fish fed HFD. In zebrafish liver cells, Cyclin D1 knockdown and blocking of Cyclin D1-CDK4 signal led to inhibited lipid biosynthesis and elevated lipid ß-oxidation. Besides, DHA-supplemented diet resulted in a rich of Proteobacteria and Actinobacteriota in gut microbiota, which promoted lipid ß-oxidation but did not alter the expression of Cyclin D1 in germ-free zebrafish model. In conclusion, DHA not only inhibits hepatic lipid synthesis and promotes lipid ß-oxidation via Cyclin D1 inhibition, but also facilitates lipid ß-oxidation via gut microbiota. This study reveals the lipid-lowering effects of DHA and highlights the importance of fatty acid composition when formulating fish HFD.

11.
Org Lett ; 18(14): 3390-3, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27366955

RESUMO

We present a metal-free [2 + 2 + 2] cycloaddition of ynamides with nitriles that enables highly efficient access to 2,4-diaminopyridines. This catalytic protocol is more environmentally friendly and allows for a concomitant construction of C-C and C-N bonds between ynamides and nitriles, exhibiting excellent chemoselectivity, regioselectivity, and wide functional groups tolerance.

12.
Chin Med J (Engl) ; 129(10): 1215-23, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27174331

RESUMO

BACKGROUND: The suillin isoform iso-suillin is a natural substance isolated from a petroleum ether extract of the fruiting bodies of the mushroom Suillus flavus. Previous studies have found its inhibition effect on some cancer cells, and we aimed to study its effects on human small cell lung cancer H446 cell line. METHODS: Cell viability was measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Cellular morphological changes (apoptosis and necrosis) were evaluated using an electron microscope and Hoechst 33258 staining detected by the inverted microscope. Flow cytometry was used to detect cell apoptosis, cell cycle distribution, and mitochondrial membrane potential. Protein expression was determined by Western blotting analysis. RESULTS: Here, we describe the ability of iso-suillin to inhibit the growth of H446 cells in time- and dose-dependent way. Iso-suillin had no obvious impact on normal human lymphocyte proliferation at low concentrations (9.09, 18.17, or 36.35 µmol/L) but promoted lymphocyte proliferation at a high concentration (72.70 µmol/L). After treatment of different concentrations of iso-suillin (6.82, 13.63, or 20.45 µmol/L), the apoptosis rate of H446 cells increased with increasing concentrations of iso-suillin (16.70%, 35.54%, and 49.20%, respectively, all P < 0.05 compared with the control), and the expression of related apoptotic proteins in the mitochondrial pathway including cytochrome c and caspase-9 were up-regulated compared with the control (all P < 0.05). On the contrary, Bcl-2/Bax ratio was down-regulated compared with the control. Besides, the expression of pro-apoptotic proteins in the death receptor apoptosis pathway, including Fas-associating protein with a novel death domain and caspase-8, and the expression of caspase-3, a downstream regulatory protein of apoptosis, were also increased compared with the control (all P < 0.05). Inhibitors of caspase-9 and caspase-8 reversed the apoptosis process in H446 cells to varying degrees. CONCLUSIONS: These results suggest that iso-suillin could induce H446 cell apoptosis through the mitochondrial pathway and the death-receptor pathway. Therefore, iso-suillin might have a potential application as a novel drug for lung cancer treatment.


Assuntos
Diterpenos/farmacologia , Fenóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Citometria de Fluxo , Humanos , Camundongos , Carcinoma de Pequenas Células do Pulmão
13.
Food Chem Toxicol ; 67: 17-25, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24534064

RESUMO

Iso-suillin, an isomer of suillin that belongs to the prenylphenol class of fungal derivatives, was isolated from petroleum ether extracts of Suillus flavus. The IC50 value of iso-suillin in K562 cells was 0.87 µM, which was lower than the positive control cisplatin (19.33 µM). Iso-suillin-treated K562 cells exhibited an increased rate of apoptosis, mitochondrial membrane potential (MMP) depolarization, and G0/G1 arrest. Western blot analysis revealed that these cells displayed significantly upregulated expression of several apoptosis-related proteins, including cytochrome c, caspase 9, FADD (Fas-associating protein with a novel death domain), caspase 8, caspase 3, and Bax. Moreover, the expression of two anti-apoptosis proteins, NF-κB and Bcl-2, was downregulated. Inhibitors of caspase 9 and caspase 8 protected the K562 cells from apoptosis. Taken together, our results suggest that iso-suillin induces K562 apoptosis through the mitochondrial and death receptor pathways and that iso-suillin may represent a candidate anti-leukemia treatment.


Assuntos
Agaricales/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diterpenos , Humanos , Células K562 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fenóis
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa