RESUMO
BACKGROUND: Exploring the association of diet and indoor and outdoor environments on the gut microbiome of red-crowned cranes. We investigated the microbiome profile of the 24 fecal samples collected from nine cranes from day 1 to 35. Differences in the gut microbiome composition were compared across diet and environments. RESULTS: A total of 2,883 operational taxonomic units (OTUs) were detected, with 438 species-specific OTUs and 106 OTUs common to the gut microbiomes of four groups. The abundance of Dietzia and Clostridium XI increased significantly when the red-crowned cranes were initially fed live mealworms. Skermanella and Deinococcus increased after the red-crowned cranes were fed fruits and vegetables and placed outdoors. Thirty-three level II pathway categories were predicted. Our study revealed the mechanism by which the gut microbiota of red-crowned cranes responds to dietary and environmental changes, laying a foundation for future breeding, nutritional and physiological studies of this species. CONCLUSIONS: The gut microbiome of red-crowned cranes could adapt to changes in diet and environment, but the proportion of live mealworms in captive red-crowned cranes can be appropriately reduced at the initial feeding stage, reducing the negative impact of high-protein and high-fat foods on the gut microbiome and growth and development.
Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Melhoramento Vegetal , Dieta/veterinária , AvesRESUMO
The strategy of using a combination of scaffold-based physical and biochemical cues to repair spinal cord injury (SCI) has shown promising results. However, integrating conductivity and neurotrophins into a scaffold that recreates the electrophysiologic and nutritional microenvironment of the spinal cord (SC) remains challenging. In this study we investigated the therapeutic potential of a soft thermo-sensitive polymer electroactive hydrogel (TPEH) loaded with nerve growth factor (NGF) combined with functional electrical stimulation (ES) for the treatment of SCI. The developed hydrogel exhibits outstanding electrical conductance upon ES, with continuous release of NGF for at least 24 days. In cultured nerve cells, TPEH loaded with NGF promoted the neuronal differentiation of neural stem cells and axonal growth, an effect that was potentiated by ES. In a rat model of SCI, TPEH combined with NGF and ES stimulated endogenous neurogenesis and improved motor function. These results indicate that the TPEH scaffold that combines ES and biochemical cues can effectively promote SC tissue repair.
Assuntos
Estimulação Elétrica/métodos , Hidrogéis/uso terapêutico , Traumatismos da Medula Espinal/terapia , Regeneração da Medula Espinal/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Hidrogéis/química , Fator de Crescimento Neural , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Alicerces TeciduaisRESUMO
Here, the complete mitochondrial genome (mitogenome) of Drawida gisti was sequenced and compared with the mitogenomes of other Metagynophora species. The circular mitogenome was 14,648 bp in length and contained two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The types of constitutive genes and the direction of the coding strand that appeared in Drawida mitogenome were identical to those observed in other Metagynophora species, except for a missing lengthy non-coding region. The conservative relationships between Drawida species were supported by the overall analyses of 13 PCGs, two rRNAs, and 22 tRNAs. A comparison of the Metagynophora mitogenomes revealed that the ATP8 gene possessed the highest polymorphism among the 13 PCGs and two rRNAs. Phylogenetic analysis suggested that the Moniligastridae contained Drawida, which is a primitive Metagynophora group. Our study provides a step forward toward elucidating the evolutionary linkages within Drawida and even Metagynophora.
Assuntos
Genoma Mitocondrial , Oligoquetos/genética , Animais , Composição de Bases , Uso do Códon , DNA Mitocondrial/química , Genes de RNAr , Proteínas Mitocondriais/genética , Oligoquetos/classificação , Filogenia , RNA de Transferência/química , RNA de Transferência/genéticaRESUMO
The earthworm (Drawida gisti) is an ecologically important sentinel species for soils that is widely distributed throughout Eastern Asia; however, the molecular tools required for genetic diversity studies of this earthworm are still rare. The aim of the study was to develop and characterize microsatellite markers in D. gisti and to evaluate their transferability to other Drawida species. We employed a RAD-seq approach to develop 12 microsatellite markers for D. gisti. The characterization and analysis of loci was achieved using 24 individuals of D. gisti from a natural population. The number of alleles per locus ranged from four to eleven, with an average of 6.5. Observed and expected heterozygosities varied from 0.708 to 0.958, and from 0.568 to 0.883, respectively. No loci presented significant deviations from the Hardy-Weinberg equilibrium, while linkage disequilibrium was detected between three loci. Cross-species amplification tests suggested that the transferability of ten loci was positive for the two congeners D. japonica and D. ghilarovi. This set of microsatellite markers may be used to evaluate the genetic diversity and population structures of D. gisti and related species in the future.
Assuntos
Alelos , Loci Gênicos , Heterozigoto , Repetições de Microssatélites , Oligoquetos/genética , Polimorfismo Genético , AnimaisRESUMO
The speckled wood-pigeon, Columba hodgsonii, is mainly distributed in Bhutan, China, India, Laos, Myanmar, Nepal, Pakistan, and Thailand. Although there are several studies on birds in the family Columbidae, no study has focused on C. hodgsonii, a member of this family. Therefore, this study aimed to clarify the phylogenetic status of C. hodgsonii. The complete mitochondrial genome (mitogenome) of C. hodgsonii was sequenced and characterized and compared with those of other Columba species. The C. hodgsonii mitogenome was found to be 17,477 bp in size and contained 13 PCGs, two rRNAs, 22 tRNAs, and one CR. Of the 37 genes encoded by the C. hodgsonii mitogenome, 28 were on the heavy strand and nine were on the light strand. Twelve PCGs were initiated by ATN codons and one PCG harbored an incomplete termination codon (T-). The base composition of C. hodgsonii PCGs was A = 29.44%, T = 24.37%, G = 12.43%, and C = 33.76%. For the whole mitogenome, including PCGs, rRNAs, tRNAs, and the control region, the AT-skew was positive, and the GC-skew was negative. Phylogenetic analysis based on the base sequences of 13 PCGs from 28 Columbidae species and one outgroup using maximum likelihood and Bayesian inference indicated that C. hodgsonii belongs to the genus Columba and that the family Columbidae is monophyletic.
Assuntos
Columbidae/genética , Genoma Mitocondrial/genética , Animais , Sudeste Asiático , Composição de Bases , Sequência de Bases , Teorema de Bayes , China , Códon , Índia , Conformação de Ácido Nucleico , Filogenia , RNA Ribossômico/genética , RNA de Transferência/genéticaRESUMO
The liquid biopsy is being integrated into cancer diagnostics and surveillance. However, critical questions still remain, such as how to precisely evaluate cancer mutation burden and interpret the corresponding clinical implications. Herein, we evaluated the role of peripheral blood cell-free DNA (cfDNA) in characterizing the dynamic mutation alterations of 48 cancer driver genes from cervical cancer patients. We performed targeted deep sequencing on 93 plasma cfDNA from 57 cervical cancer patients and from this developed an algorithm, allele fraction deviation (AFD), to monitor in an unbiased manner the dynamic changes of genomic aberrations. Differing treatments, including chemotherapy (n = 22), radiotherapy (n = 14) and surgery (n = 15), led to a significant decrease in AFD values (Wilcoxon, p = 0.029). The decrease of cfDNA AFD values was accompanied by shrinkage in the size of the tumor in most patients. However, in a subgroup of patients where cfDNA AFD values did not reflect a reduction in tumor size, there was a detection of progressive disease (metastasis). Furthermore, a low AFD value at diagnosis followed a later increase of AFD value also successfully predicted relapse. These results show that plasma cfDNA, together with targeted deep sequencing, may help predict treatment response and disease development in cervical cancer.
Assuntos
Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/sangue , DNA Tumoral Circulante/genética , Neoplasias do Colo do Útero/sangue , Neoplasias do Colo do Útero/genética , Adulto , Idoso , Alelos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Quimiorradioterapia/métodos , DNA de Neoplasias/sangue , DNA de Neoplasias/genética , Feminino , Genoma/genética , Genômica/métodos , Humanos , Pessoa de Meia-Idade , Mutação/genética , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/radioterapiaRESUMO
MOTIVATION: DNA methylation is an important epigenetic modification that has essential role in gene regulation, cell differentiation and cancer development. Bisulfite sequencing is a widely used technique to obtain genome-wide DNA methylation profiles, and one of the key tasks of analyzing bisulfite sequencing data is to detect differentially methylated regions (DMRs) among samples under different treatment conditions. Although numerous tools have been proposed to detect differentially methylated single CpG site (DMC) between samples, methods for direct DMR detection, especially for complex study designs, are largely limited. RESULTS: We present a new software, GetisDMR, for direct DMR detection. We use beta-binomial regression to model the whole-genome bisulfite sequencing data, where variations in methylation levels and confounding effects have been accounted for. We employ a region-wise test statistic, which is derived from local Getis-Ord statistics and considers the spatial correlation between nearby CpG sites, to detect DMRs. Unlike existing methods, that attempt to infer DMRs from DMCs based on empirical criteria, we provide statistical inference for direct DMR detection. Through extensive simulations and an application to two mouse datasets, we demonstrate that GetisDMR achieves better sensitivities, positive predictive values, more exact locations and better agreement of DMRs with current biological knowledge. AVAILABILITY AND IMPLEMENTATION: It is available at https://github.com/DMU-lilab/GetisDMR CONTACTS: y.wen@auckland.ac.nz or zhiguangli@dlmedu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Metilação de DNA , Genoma , Animais , Humanos , Camundongos , Análise de Sequência de DNA , Software , SulfitosRESUMO
Food fraud is widespread in the aquatic food market, hence fast and non-destructive methods of identification of fish flesh are needed. In this study, multispectral imaging (MSI) was used to screen flesh slices from 20 edible fish species commonly found in the sea around Yantai, China, by combining identification based on the mitochondrial COI gene. We found that nCDA images transformed from MSI data showed significant differences in flesh splices of the 20 fish species. We then employed eight models to compare their prediction performances based on the hold-out method with 70% training and 30% test sets. Convolutional neural network (CNN), quadratic discriminant analysis (QDA), support vector machine (SVM), and linear discriminant analysis (LDA) models perform well on cross-validation and test data. CNN and QDA achieved more than 99% accuracy on the test set. By extracting the CNN features for optimization, a very high degree of separation was obtained for all species. Furthermore, based on the Gini index in RF, 11 bands were selected as key classification features for CNN, and an accuracy of 98% was achieved. Our study developed a successful pipeline for employing machine learning models (especially CNN) on MSI identification of fish flesh, and provided a convenient and non-destructive method to determine the marketing of fish flesh in the future.
RESUMO
BACKGROUND: Early detection of nasopharyngeal carcinoma (NPC) poses a significant challenge. The absence of highly sensitive and specific diagnostic biomarkers for nasopharyngeal carcinoma contributes to the unfavourable prognosis of NPC patients. Here, we aimed to establish a non-invasive approach for detecting NPC using circulating cell-free DNA (cfDNA). METHODS: We investigated the potential of next-generation sequencing (NGS) of peripheral blood cells as a diagnostic tool for NPC. We collected data on genome-wide nucleosome footprint (NF), 5'-end motifs, fragmentation patterns, CNV information, and EBV content from 553 Chinese subjects, including 234 NPC patients and 319 healthy individuals. Through case-control analysis, we developed a diagnostic model for NPC, and validated its detection capability. FINDINGS: Our findings revealed that the frequencies of NF, fragmentation, and motifs were significantly higher in NPC patients compared to healthy controls. We developed an NPC score based on these parameters that accurately distinguished NPC from non-NPC cases according to the American Joint Committee on Cancer staging system from non-NPC (validation set: area under curve (AUC) = 99.9% (95% CI: 99.8%-100%), se: 98.15%, sp: 100%). This model showed superior performance over plasma EBV DNA. Additionally, the NPC score effectively differentiated between NPC patients and healthy controls, even after clinical treatment. Furthermore, the NPC score was found to be independent of potential confounders such as age, sex, or TNM stage. INTERPRETATION: We have developed and verified a non-invasive approach with substantial potential for clinical application in detecting NPC. FUNDING: A full list of funding bodies that contributed to this study can be found in Funding section.
Assuntos
Biomarcadores Tumorais , Ácidos Nucleicos Livres , Sequenciamento de Nucleotídeos em Larga Escala , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/virologia , Carcinoma Nasofaríngeo/sangue , Feminino , Masculino , Ácidos Nucleicos Livres/sangue , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Neoplasias Nasofaríngeas/diagnóstico , Neoplasias Nasofaríngeas/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/sangue , Adulto , Estudos de Casos e Controles , Idoso , Herpesvirus Humano 4/genética , Curva ROC , Detecção Precoce de Câncer/métodos , Variações do Número de Cópias de DNA , Estadiamento de Neoplasias , DNA Viral/sangue , DNA Viral/genéticaRESUMO
Hyperuricaemia (HUA) is a metabolic disorder characterised by high blood uric acid (UA) levels; moreover, HUA severity is closely related to the gut microbiota. HUA is also a risk factor for renal damage, diabetes, hypertension, and dyslipidaemia; however, current treatments are associated with detrimental side effects. Alternatively, Fangyukangsuan granules are a natural product with UA-reducing properties. To examine their efficacy in HUA, the binding of small molecules in Fangyukangsuan granules to xanthine oxidase (XOD), a key factor in UA metabolism, was investigated via molecular simulation, and the effects of oral Fangyukangsuan granule administration on serum biochemical indices and intestinal microorganisms in HUA-model rats were examined. Overall, 24 small molecules in Fangyukangsuan granules could bind to XOD. Serum UA, creatinine, blood urea nitrogen, and XOD levels were decreased in rats treated with Fangyukangsuan granules compared to those in untreated HUA-model rats. Moreover, Fangyukangsuan granules restored the intestinal microbial structure in HUA-model rats. Functional analysis of the gut microbiota revealed decreased amino acid biosynthesis and increased fermentation of pyruvate into short-chain fatty acids in Fangyukangsuan granule-treated rats. Together, these findings demonstrate that Fangyukangsuan granules have anti-hyperuricaemic and regulatory effects on the gut microbiota and may be a therapeutic candidate for HUA.
Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Hiperuricemia , Ácido Úrico , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Ratos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Masculino , Ácido Úrico/sangue , Xantina Oxidase/metabolismo , Ratos Sprague-DawleyRESUMO
BACKGROUND: Liver cirrhosis (LC) is the highest risk factor for hepatocellular carcinoma (HCC) development worldwide. The efficacy of the guideline-recommended surveillance methods for patients with LC remains unpromising. METHODS: A total of 4367 LCs not previously known to have HCC and 510 HCCs from 16 hospitals across 11 provinces of China were recruited in this multi-center, large-scale, cross-sectional study. Participants were divided into Stage â cohort (510 HCCs and 2074 LCs) and Stage â ¡ cohort (2293 LCs) according to their enrollment time and underwent Tri-phasic CT/enhanced MRI, US, AFP, and cell-free DNA (cfDNA). A screening model called PreCar Score was established based on five features of cfDNA using Stage â cohort. Surveillance performance of PreCar Score alone or in combination with US/AFP was evaluated in Stage â ¡ cohort. FINDINGS: PreCar Score showed a significantly higher sensitivity for the detection of early/very early HCC (Barcelona stage A/0) in contrast to US (sensitivity of 51.32% [95% CI: 39.66%-62.84%] at 95.53% [95% CI: 94.62%-96.38%] specificity for PreCar Score; sensitivity of 23.68% [95% CI: 14.99%-35.07%] at 99.37% [95% CI: 98.91%-99.64%] specificity for US) (P < 0.01, Fisher's exact test). PreCar Score plus US further achieved a higher sensitivity of 60.53% at 95.08% specificity for early/very early HCC screening. INTERPRETATION: Our study developed and validated a cfDNA-based screening tool (PreCar Score) for HCC in cohorts at high risk. The combination of PreCar Score and US can serve as a promising and practical strategy for routine HCC care. FUNDING: A full list of funding bodies that contributed to this study can be found in Acknowledgments section.
Assuntos
Carcinoma Hepatocelular , Ácidos Nucleicos Livres , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/epidemiologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/epidemiologia , alfa-Fetoproteínas , Estudos Transversais , Detecção Precoce de Câncer/métodos , Ultrassonografia/métodos , Cirrose Hepática/diagnóstico , Cirrose Hepática/complicações , Biomarcadores TumoraisRESUMO
BACKGROUND: Cell-free DNA (cfDNA) is emerging as a potential biomarker for the detection of ovarian cancer (OC). Recently, we reported a method based upon cfDNA whole-genome sequencing data including the nucleosome distribution (nucleosome footprinting NF), terminal signature sequence (motif), DNA fragmentation (fragment), and copy number variation (CNV).In the present study, we explored whether multiomics early screening technology in cfDNA can be applied for early screening of ovarian cancer. METHODS: Fifty-nine patients with OC and 100 healthy controls were included in this prospective study. Cell-free DNA was extracted from plasma and analyzed by low-pass whole-genome sequencing. Genomic features were obtained for all samples of the cohort, including copy number variation (CNV), 5'-end motifs, fragmentation profiles, and nucleosome footprinting (NF). An integrated scoring system termed the OC score was developed based on the performance of these four features. RESULTS: All four features showed diagnostic potential for OC. Based on the unique genome features of cfDNA, the OC score has high accuracy in distinguishing OC patients from healthy controls (AUC 97.7%; sensitivity 94.7%; specificity 98.0%) as a new comprehensive diagnostic method for OC. The OC score showed a gradual trend from healthy controls to OC patients with different stages, especially for early OC monitoring of concern, which achieved a satisfactory sensitivity (85.7%) at a high specificity. CONCLUSIONS: This is the first study evaluating the potential of cell-free DNA for the diagnosis of primary OC using multidimensional early screening technology. We present a promising method to increase the accuracy of prediction in patients with OC.
Assuntos
Ácidos Nucleicos Livres , Neoplasias Ovarianas , Humanos , Feminino , Variações do Número de Cópias de DNA , Estudos Prospectivos , Nucleossomos/genética , Biomarcadores Tumorais/genética , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/genéticaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) generally arises from a background of liver cirrhosis (LC). Patients with cirrhosis and suspected HCC are recommended to undergo serum biomarker tests and imaging diagnostic evaluation. However, the performance of routine diagnostic methods in detecting early HCC remains unpromising. METHODS: Here, we conducted a large-scale, multicenter study of 1675 participants including 490 healthy controls, 577 LC patients, and 608 HCC patients from nine clinical centers across nine provinces of China, profiled gene mutation signatures of cell-free DNA (cfDNA) using Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) through detecting 931 mutation sites across 21 genes. RESULTS: An integrated diagnostic model called "Combined method" was developed by combining three mutation sites and three serum biomarkers. Combined method outperformed AFP in the diagnosis of HCC, especially early HCC, with sensitivities of 81.25% for all stages and 66.67% for early HCC, respectively. Importantly, the integrated model exhibited high accuracy in differentiating AFP-negative, AFP-L3-negative, and PIVKA-II-negative HCCs from LCs.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , alfa-Fetoproteínas , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Cirrose Hepática/diagnóstico , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genéticaRESUMO
A new protocol has been developed for vinyl sulfide synthesis promoted by an alkoxy base under metal-free conditions. In this reaction, aryl and alkenyl sulfonium triflates with diverse functionalities are converted into vinyl sulfides with excellent reactivity. This transformation features mild and safe reaction conditions that avoid catalyst, transition metal, high-pressure gas, and high reaction temperature without compromising efficiency.
RESUMO
PURPOSE: Intratumoral hepatitis B virus (HBV) integrations and mutations are related to hepatocellular carcinoma (HCC) progression. Circulating cell-free DNA (cfDNA) has shown itself as a powerful noninvasive biomarker for cancer. However, the HBV integration and mutation landscape on cfDNA remains unclear. EXPERIMENTAL DESIGN: A cSMART (Circulating Single-Molecule Amplification and Resequencing Technology)-based method (SIM) was developed to simultaneously investigate HBV integration and mutation landscapes on cfDNA with HBV-specific primers covering the whole HBV genome. Patients with HCC (n = 481) and liver cirrhosis (LC; n = 517) were recruited in the study. RESULTS: A total of 6,861 integration breakpoints including TERT and KMT2B were discovered in HCC cfDNA, more than in LC. The concentration of circulating tumor DNA (ctDNA) was positively correlated with the detection rate of these integration hotspots and total HBV integration events in cfDNA. To track the origin of HBV integrations in cfDNA, whole-genome sequencing (WGS) was performed on their paired tumor tissues. The paired comparison of WGS data from tumor tissues and SIM data from cfDNA confirmed most recurrent integration events in cfDNA originated from tumor tissue. The mutational landscape across the whole HBV genome was first generated for both HBV genotype C and B. A region from nt1100 to nt1500 containing multiple HCC risk mutation sites (OR > 1) was identified as a potential HCC-related mutational hot zone. CONCLUSIONS: Our study provides an in-depth delineation of HBV integration/mutation landscapes at cfDNA level and did a comparative analysis with their paired tissues. These findings shed light on the possibilities of noninvasive detection of virus insertion/mutation.
Assuntos
Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/virologia , Ácidos Nucleicos Livres/sangue , Vírus da Hepatite B/genética , Cirrose Hepática/sangue , Cirrose Hepática/virologia , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/virologia , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
The complete mitochondrial genome of Lumbricus rubellus was analyzed by next-generation sequencing. The mitogenome was 15,464 bp in length, comprising 13 protein-coding genes (PCGs), 22 transfer RNAs, 2 ribosomal RNAs, and a non-coding region. The phylogenetic analysis of 13 PCGs within the class Oligochaeta suggested that L. rubellus was placed as sister to L. terrestris of the same genus. The results obtained here can contribute to the phylogenetic analysis of earthworms.
RESUMO
The complete mitogenome of a lorikeet, Trichoglossus rubritorquis (Psittaciformes, Loriidae), was determined first in the genus Trichoglossus. The assembled mitogenome was 17,915 bp and composed of 13 protein-coding genes, 22 tRNAs, two rRNAs and two control regions. Nucleotide composition of T. rubritorquis mitogenome was 30.20% A, 33.30% C, 14.04% G, and 22.46% T, with an A + T bias of 52.66%. ML tree based on 13 protein-coding genes indicated that, Melopsittacus undulatus of the family Psittacidae was the closest related species to T. rubritorquis. This result suggested that lorikeets might still be in the family Psittacidae.
RESUMO
The first complete mitogenome of Hong Kong paradise fish (Macropodus hongkongensis) was determined in this study. The assembled mitogenome is 16,494 bp and consisted of 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a control region. Nucleotide composition of the complete mitogenome is 30.6% A, 24.8% C, 14.8% G, and 29.8% T, with an A + T bias of 60.4%. The maximum-likelihood tree based on 13 protein-coding genes showed that M. erythropterus was the closest related species to M. hongkongensis.
RESUMO
During the past decades, improving patient neurological recovery following spinal cord injury (SCI) has remained a challenge. An effective treatment for SCI would not only reduce fractured elements and isolate developing local glial scars to promote axonal regeneration but also ameliorate secondary effects, including inflammation, apoptosis, and necrosis. Three-dimensional (3D) scaffolds provide a platform in which these mechanisms can be addressed in a controlled manner. Polymer scaffolds with favorable biocompatibility and appropriate mechanical properties have been engineered to minimize cicatrization, customize drug release, and ensure an unobstructed space to promote cell growth and differentiation. These properties make polymer scaffolds an important potential therapeutic platform. This review highlights the recent developments in polymer scaffolds for SCI engineering. STATEMENT OF SIGNIFICANCE: How to improve the efficacy of neurological recovery after spinal cord injury (SCI) is always a challenge. Tissue engineering provides a promising strategy for SCI repair, and scaffolds are one of the most important elements in addition to cells and inducing factors. The review highlights recent development and future prospects in polymer scaffolds for SCI therapy. The review will guide future studies by outlining the requirements and characteristics of polymer scaffold technologies employed against SCI. Additionally, the peculiar properties of polymer materials used in the therapeutic process of SCI also have guiding significance to other tissue engineering approaches.
Assuntos
Polímeros , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Medula Espinal , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Diferenciação Celular , Proliferação de Células , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Polímeros/química , Polímeros/uso terapêutico , Medula Espinal/metabolismo , Medula Espinal/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapiaRESUMO
INTRODUCTION: Targeted therapies are based on specific gene alterations. Various specimen types have been used to determine gene alterations, however, no systemic comparisons have yet been made. Herein, we assessed alterations in selected cancer-associated genes across varying sample sites in lung cancer patients. MATERIALS AND METHODS: Targeted deep sequencing for 48 tumor-related genes was applied to 153 samples from 55 lung cancer patients obtained from six sources: Formalin-fixed paraffin-embedded (FFPE) tumor tissues, pleural effusion supernatant (PES) and pleural effusion cell sediments (PEC), white blood cells (WBCs), oral epithelial cells (OECs), and plasma. RESULTS: Mutations were detected in 96% (53/55) of the patients and in 83% (40/48) of the selected genes. Each sample type exhibited a characteristic mutational pattern. As anticipated, TP53 was the most affected sequence (54.5% patients), however this was followed by NOTCH1 (36%, across all sample types). EGFR was altered in patient samples at a frequency of 32.7% and KRAS 10.9%. This high EGFR/ low KRAS frequency is in accordance with other TCGA cohorts of Asian origin but differs from the Caucasian population where KRAS is the more dominant mutation. Additionally, 66% (31/47) of PEC samples had copy number variants (CNVs) in at least one gene. Unlike the concurrent loss and gain in most genes, herein NOTCH1 loss was identified in 21% patients, with no gain observed. Based on the relative prevalence of mutations and CNVs, we divided lung cancer patients into SNV-dominated, CNV-dominated, and codominated groups. CONCLUSIONS: Our results confirm previous reports that EGFR mutations are more prevalent than KRAS in Chinese lung cancer patients. NOTCH1 gene alterations are more common than previously reported and reveals a role of NOTCH1 modifications in tumor metastasis. Furthermore, genetic material from malignant pleural effusion cell sediments may be a noninvasive manner to identify CNV and participate in treatment decisions.