Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cancer Immunol Immunother ; 72(4): 881-893, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36121452

RESUMO

BACKGROUND: Immunotherapy has largely improved clinical outcome of patients with esophageal squamous cell carcinoma (ESCC). However, a proportion of patients still fail to benefit. Thus, biomarkers predicting therapeutic resistance and underlying mechanism needs to be investigated. METHODS: Transcriptomic profiling was applied in FFPE tissues from 103 ESCC patients, including surgical samples from 66 treatment-naïve patients with long-term follow-up, and endoscopic biopsies from 37 local advanced ESCC cases receiving neoadjuvant immunotherapy plus chemotherapy. Unsupervised clustering indicated an aggressive phenotype with mesenchymal character in 66 treatment-naïve samples. Univariant logistic regression was applied to identify candidate biomarkers potentially predicted resistance to neoadjuvant immunotherapy within the range of mesenchymal phenotype enriched genes. These biomarkers were further validated by immunohistochemistry. Putative mechanisms mediating immunotherapy resistance, as indicated by microenvironment and immune cell infiltration, were evaluated by transcriptomic data, and validated by multiplex immunofluorescence. RESULTS: PLEK2 and IFI6, highly expressed in mesenchymal phenotype, were identified as novel biomarkers relating to non-MPR in neoadjuvant immunotherapy cohort [PLEK2high, OR (95% CI): 2.15 (1.07-4.33), P = 0.032; IFI6high, OR (95% CI): 2.21 (1.16-4.23), P = 0.016). PLEK2high and IFI6 high ESCC patients (versus low expressed patients) further exhibit higher chance of non-major pathological remissions (90%, P = 0.004) in neoadjuvant immunotherapy cohort and high mortality (78.9%, P = 0.05), poor prognosis in retrospective cohort. PLEK2high/IFI6high ESCC recapitulated mesenchymal phenotype, characterized by extracellular matrix composition and matrix remodeling. In addition, PLEK2high or IFI6high ESCC displayed an immune-unfavored microenvironment, represented by positive correlating with regulatory T cells, Helper 2 T cell as well as less infiltration of B cells, effector T cells and mast cells. CONCLUSIONS: PLEK2 and IFI6 was discovered of first time to identify a distinct ESCC subpopulation cannot be benefited from neoadjuvant immunotherapy and present a poor survival, which putatively associated with mesenchymal and immune-suppressive microenvironment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/patologia , Estudos Retrospectivos , Terapia Neoadjuvante , Prognóstico , Biomarcadores Tumorais/genética , Imunoterapia , Microambiente Tumoral , Proteínas Mitocondriais/uso terapêutico , Proteínas de Membrana/uso terapêutico
2.
Ann Surg Oncol ; 30(13): 8231-8243, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37755566

RESUMO

OBJECTIVE: We aimed to develop and validate a radiomics nomogram and determine the value of radiomic features from lymph nodes (LNs) for predicting pathological complete response (pCR) to neoadjuvant chemoradiotherapy (NCRT) in patients with locally advanced esophageal squamous cell carcinoma (ESCC). METHODS: In this multicenter retrospective study, eligible participants who had undergone NCRT followed by radical esophagectomy were consecutively recruited. Three radiomics models (modelT, modelLN, and modelTLN) based on tumor and LN features, alone and combined, were developed in the training cohort. The radiomics nomogram was developed by incorporating the prediction value of the radiomics model and clinicoradiological risk factors using multivariate logistic regression, and was evaluated using the receiver operating characteristic curve, validated in two external validation cohorts. RESULTS: Between October 2011 and December 2018, 116 patients were included in the training cohort. Between June 2015 and October 2020, 51 and 27 patients from two independent hospitals were included in validation cohorts 1 and 2, respectively. The radiomics modelTLN performed better than the radiomics modelT for predicting pCR. The radiomics nomogram incorporating the predictive value of the radiomics modelTLN and heterogeneous after NCRT outperformed the clinicoradiological model, with an area under the curve (95% confidence interval) of 0.833 (0.765-0.894) versus 0.764 (0.686-0.833) [p = 0.088, DeLong test], 0.824 (0.718-0.909) versus 0.692 (0.554-0.809) [p = 0.012], and 0.902 (0.794-0.984) versus 0.696 (0.526-0.857) [p = 0.024] in all three cohorts. CONCLUSIONS: Radiomic features from LNs could provide additional value for predicting pCR in ESCC patients, and the radiomics nomogram provided an accurate prediction of pCR, which might aid treatment decision.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Nomogramas , Estudos Retrospectivos , Terapia Neoadjuvante , Fator de Crescimento Transformador beta
3.
Ann Surg Oncol ; 29(11): 6786-6799, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35789309

RESUMO

BACKGROUND: Lymph node (LN) metastasis is significantly associated with worse prognosis for patients with intrahepatic cholangiocarcinoma (ICC). Improvement in preoperative assessment on LN metastasis helps in treatment decision-making. We aimed to investigate the role of radiomics-based method in predicting LN metastasis for patients with ICC. METHODS: A total of 296 patients with ICC who underwent curative-intent hepatectomy and lymphadenectomy at two centers in China were analyzed. Radiomic features, including histogram- and wavelet-based features, shape and size features, and texture features were extracted from four-phase computerized tomography (CT) images. The clinical and conventional radiological variables which were independently associated with LN metastasis were also identified. A combined nomogram predicting LN metastasis was developed, and its performance was determined by discrimination, calibration, and stratification of long-term prognosis. The results were validated by the internal and external validation cohorts. RESULTS: Twenty-four radiomic features were selected into the nomogram. The established nomogram demonstrated good discrimination and calibration, with areas under the curve (AUCs) of 0.98 [95% confidence interval (CI) 0.96-0.99], 0.93 (0.88-0.98), and 0.89 (0.81-0.96) in the training and two validation cohorts, respectively. The 5-year overall survival (OS) and recurrence-free survival (RFS) rates of patients with high risk of LN metastasis as grouped by nomogram were poorer than those of patients with low risk in the training cohort (OS 28.8% versus 53.9%, p < 0.001; RFS 26.3% versus 44.2%, p = 0.001). Similar results were observed in the two validation cohorts. CONCLUSIONS: Radiomics-based method provided accurate prediction of LN metastasis and prognostic assessment for ICC patients, and might aid the preoperative surgical decision.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Neoplasias dos Ductos Biliares/cirurgia , Ductos Biliares Intra-Hepáticos/diagnóstico por imagem , Ductos Biliares Intra-Hepáticos/cirurgia , Colangiocarcinoma/diagnóstico por imagem , Colangiocarcinoma/cirurgia , Humanos , Metástase Linfática , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
4.
Hepatobiliary Pancreat Dis Int ; 21(4): 325-333, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34674948

RESUMO

BACKGROUND: Macrovascular invasion (MaVI) occurs in nearly half of hepatocellular carcinoma (HCC) patients at diagnosis or during follow-up, which causes severe disease deterioration, and limits the possibility of surgical approaches. This study aimed to investigate whether computed tomography (CT)-based radiomics analysis could help predict development of MaVI in HCC. METHODS: A cohort of 226 patients diagnosed with HCC was enrolled from 5 hospitals with complete MaVI and prognosis follow-ups. CT-based radiomics signature was built via multi-strategy machine learning methods. Afterwards, MaVI-related clinical factors and radiomics signature were integrated to construct the final prediction model (CRIM, clinical-radiomics integrated model) via random forest modeling. Cox-regression analysis was used to select independent risk factors to predict the time of MaVI development. Kaplan-Meier analysis was conducted to stratify patients according to the time of MaVI development, progression-free survival (PFS), and overall survival (OS) based on the selected risk factors. RESULTS: The radiomics signature showed significant improvement for MaVI prediction compared with conventional clinical/radiological predictors (P < 0.001). CRIM could predict MaVI with satisfactory areas under the curve (AUC) of 0.986 and 0.979 in the training (n = 154) and external validation (n = 72) datasets, respectively. CRIM presented with excellent generalization with AUC of 0.956, 1.000, and 1.000 in each external cohort that accepted disparate CT scanning protocol/manufactory. Peel9_fos_InterquartileRange [hazard ratio (HR) = 1.98; P < 0.001] was selected as the independent risk factor. The cox-regression model successfully stratified patients into the high-risk and low-risk groups regarding the time of MaVI development (P < 0.001), PFS (P < 0.001) and OS (P = 0.002). CONCLUSIONS: The CT-based quantitative radiomics analysis could enable high accuracy prediction of subsequent MaVI development in HCC with prognostic implications.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
J Magn Reson Imaging ; 51(6): 1890-1899, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31808980

RESUMO

BACKGROUND: Whether men with a prostate-specific antigen (PSA) level of 4-10 ng/mL should be recommended for a biopsy is clinically challenging. PURPOSE: To develop and validate a radiomics model based on multiparametric MRI (mp-MRI) in patients with PSA levels of 4-10 ng/mL to predict prostate cancer (PCa) preoperatively and reduce unnecessary biopsies. STUDY TYPE: Retrospective. SUBJECTS: In all, 199 patients with PSA levels of 4-10 ng/mL. FIELD STRENGTH/SEQUENCE: 3T, T2 -weighted, diffusion-weighted, and dynamic contrast-enhanced MRI. ASSESSMENT: Lesion regions of interest (ROIs) from T2 -weighted, diffusion-weighted, and dynamic contrast-enhanced MRI were annotated by two radiologists. A total of 2104 radiomic features were extracted from the ROI of each patient. A random forest classifier was used to build the radiomics model for PCa in the primary cohort. A combined model was constructed using multivariate logistic regression by incorporating the radiomics signature and clinical-radiological risk factors. STATISTICAL TESTS: For continuous variables, variance equality was assessed by Levene's test and Student's t-test, and Welch's t-test was used to assess between-group differences. For categorical variables, Pearson's chi-square test, Fisher's exact test, or the approximate chi-square test was used to assess between-group differences. P < 0.05 was considered statistically significant. RESULTS: The combined model incorporating the multi-imaging fusion model, age, PSA density (PSAD), and the PI-RADS v2 score yielded area under the curve (AUC) values of 0.956 and 0.933 on the primary (n = 133) and validation (n = 66) cohorts, respectively. Compared with the clinical-radiological model, the combined model performed better on both the primary and validation cohorts (P < 0.05). Furthermore, the use of the combined model to predict PCa could identify more negative PCa patients than the use of the clinical-radiological model by 18.4%. DATA CONCLUSION: The combined model was developed and validated to provide potential preoperative prediction of PCa in men with PSA levels of 4-10 ng/mL and might aid in treatment decision-making and reduce unnecessary biopsies. LEVEL OF EVIDENCE: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1890-1899.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Biópsia , Detecção Precoce de Câncer , Humanos , Imageamento por Ressonância Magnética , Masculino , Antígeno Prostático Específico/análise , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos
6.
Eur Radiol ; 29(7): 3325-3337, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30972543

RESUMO

OBJECTIVES: To develop and validate a radiomics nomogram to preoperative prediction of isocitrate dehydrogenase (IDH) genotype for astrocytomas, which might contribute to the pretreatment decision-making and prognosis evaluating. METHODS: One hundred five astrocytomas (Grades II-IV) with contrast-enhanced T1-weighted imaging (CE-T1WI), T2 fluid-attenuated inversion recovery (T2FLAIR), and apparent diffusion coefficient (ADC) map were enrolled in this study (training cohort: n = 74; validation cohort: n = 31). IDH1/2 genotypes were determined using Sanger sequencing. A total of 3882 radiomics features were extracted. Support vector machine algorithm was used to build the radiomics signature on the training cohort. Incorporating radiomics signature and clinico-radiological risk factors, the radiomics nomogram was developed. Receiver operating characteristic (ROC) curve and area under the curve (AUC) were used to assess these models. Kaplan-Meier survival analysis and log rank test were performed to assess the prognostic value of the radiomics nomogram. RESULTS: The radiomics signature was built by six selected radiomics features and yielded AUC values of 0.901 and 0.888 in the training and validation cohorts. The radiomics nomogram based on the radiomics signature and age performed better than the clinico-radiological model (training cohort, AUC = 0.913 and 0.817; validation cohort, AUC = 0.900 and 0.804). Additionally, the survival analysis showed that prognostic values of the radiomics nomogram and IDH genotype were similar (log rank test, p < 0.001; C-index = 0.762 and 0.687; z-score test, p = 0.062). CONCLUSIONS: The radiomics nomogram might be a useful supporting tool for the preoperative prediction of IDH genotype for astrocytoma, which could aid pretreatment decision-making. KEY POINTS: • The radiomics signature based on multiparametric and multiregional MRI images could predict IDH genotype of Grades II-IV astrocytomas. • The radiomics nomogram performed better than the clinico-radiological model, and it might be an easy-to-use supporting tool for IDH genotype prediction. • The prognostic value of the radiomics nomogram was similar with that of the IDH genotype, which might contribute to prognosis evaluating.


Assuntos
Astrocitoma/genética , Isocitrato Desidrogenase/genética , Nomogramas , Adulto , Algoritmos , Área Sob a Curva , Astrocitoma/diagnóstico por imagem , Astrocitoma/patologia , Astrocitoma/cirurgia , Sistemas de Apoio a Decisões Clínicas , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Genótipo , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Cuidados Pré-Operatórios/métodos , Prognóstico , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Fatores de Risco , Máquina de Vetores de Suporte , Adulto Jovem
7.
Eur Radiol ; 29(3): 1625-1634, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30255254

RESUMO

OBJECTIVES: To predict cavernous sinus (CS) invasion by pituitary adenomas (PAs) pre-operatively using a radiomics method based on contrast-enhanced T1 (CE-T1) and T2-weighted magnetic resonance (MR) imaging. METHODS: A total of 194 patients with Knosp grade two and three PAs (training set: n = 97; test set: n = 97) were enrolled in this retrospective study. From CE-T1 and T2 MR images, 2553 quantitative imaging features were extracted. To select the most informative features, least absolute shrinkage and selection operator (LASSO) was performed. Subsequently, a linear support vector machine (SVM) was used to fit the predictive model. Furthermore, a nomogram was constructed by incorporating clinico-radiological risk factors and radiomics signature, and the clinical usefulness of the nomogram was validated using decision curve analysis (DCA). RESULTS: Three imaging features were selected in the training set, based on which the radiomics model yielded area under the curve (AUC) values of 0.852 and 0.826 for the training and test sets. The nomogram based on the radiomics signature and the clinico-radiological risk factors yielded an AUC of 0.899 in the training set and 0.871 in the test set. CONCLUSIONS: The nomogram developed in this study might aid neurosurgeons in the pre-operative prediction of CS invasion by Knosp grade two and three PAs, which might contribute to creating surgical strategies. KEY POINTS: • Pre-operative diagnosis of CS invasion by PAs might affect creating surgical strategies • MRI might help for diagnosis of CS invasion by PAs before surgery • Radiomics might improve the CS invasion detection by MR images.


Assuntos
Adenoma/patologia , Seio Cavernoso/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Hipofisárias/patologia , Máquina de Vetores de Suporte , Adenoma/diagnóstico por imagem , Adulto , Idoso , Área Sob a Curva , Seio Cavernoso/diagnóstico por imagem , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Nomogramas , Neoplasias Hipofisárias/diagnóstico por imagem , Estudos Retrospectivos , Fatores de Risco
8.
Eur Radiol ; 29(2): 877-888, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30039219

RESUMO

OBJECTIVES: Oxygen 6-methylguanine-DNA methyltransferase (MGMT) promoter methylation is a significant prognostic biomarker in astrocytomas, especially for temozolomide (TMZ) chemotherapy. This study aimed to preoperatively predict MGMT methylation status based on magnetic resonance imaging (MRI) radiomics and validate its value for evaluation of TMZ chemotherapy effect. METHODS: We retrospectively reviewed a cohort of 105 patients with grade II-IV astrocytomas. Radiomic features were extracted from the tumour and peritumoral oedema habitats on contrast-enhanced T1-weighted images, T2-weighted fluid-attenuated inversion recovery images and apparent diffusion coefficient (ADC) maps. The following radiomics analysis was structured in three phases: feature reduction, signature construction and discrimination statistics. A fusion radiomics signature was finally developed using logistic regression modelling. Predictive performance was compared between the radiomics signature, previously reported clinical factors and ADC parameters. Validation was additionally performed on a time-independent cohort (n = 31). The prognostic value of the signature on overall survival for TMZ chemotherapy was explored using Kaplan Meier estimation. RESULTS: The fusion radiomics signature exhibited supreme power for predicting MGMT promoter methylation, with area under the curve values of 0.925 in the training cohort and 0.902 in the validation cohort. Performance of the radiomics signature surpassed that of clinical factors and ADC parameters. Moreover, the radiomics approach successfully divided patients into high-risk and low-risk groups for overall survival after TMZ chemotherapy (p = 0.03). CONCLUSIONS: The proposed radiomics signature accurately predicted MGMT promoter methylation in patients with astrocytomas, and achieved survival stratification for TMZ chemotherapy, thus providing a preoperative basis for individualised treatment planning. KEY POINTS: • Radiomics using magnetic resonance imaging can preoperatively perform satisfactory prediction of MGMT methylation in grade II-IV astrocytomas. • Habitat-based radiomics can improve efficacy in predicting MGMT methylation status. • Multi-sequence radiomics signature has the power to evaluate TMZ chemotherapy effect.


Assuntos
Astrocitoma/diagnóstico por imagem , Biomarcadores Tumorais , Neoplasias Encefálicas/diagnóstico por imagem , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Imageamento por Ressonância Magnética/métodos , Cuidados Pré-Operatórios/métodos , Regiões Promotoras Genéticas , Proteínas Supressoras de Tumor/genética , Antineoplásicos Alquilantes/uso terapêutico , Astrocitoma/tratamento farmacológico , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador , Estimativa de Kaplan-Meier , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Estudos Retrospectivos , Temozolomida/uso terapêutico
11.
J Neurooncol ; 140(2): 297-306, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30097822

RESUMO

PURPOSE: To perform radiomics analysis for non-invasively predicting chromosome 1p/19q co-deletion in World Health Organization grade II and III (lower-grade) gliomas. METHODS: This retrospective study included 277 patients histopathologically diagnosed with lower-grade glioma. Clinical parameters were recorded for each patient. We performed a radiomics analysis by extracting 647 MRI-based features and applied the random forest algorithm to generate a radiomics signature for predicting 1p/19q co-deletion in the training cohort (n = 184). The clinical model consisted of pertinent clinical factors, and was built using a logistic regression algorithm. A combined model, incorporating both the radiomics signature and related clinical factors, was also constructed. The receiver operating characteristics curve was used to evaluate the predictive performance. We further validated the predictability of the three developed models using a time-independent validation cohort (n = 93). RESULTS: The radiomics signature was constructed as an independent predictor for differentiating 1p/19q co-deletion genotypes, which demonstrated superior performance on both the training and validation cohorts with areas under curve (AUCs) of 0.887 and 0.760, respectively. These results outperformed the clinical model (AUCs of 0.580 and 0.627 on training and validation cohorts). The AUCs of the combined model were 0.885 and 0.753 on training and validation cohorts, respectively, which indicated that clinical factors did not present additional improvement for the prediction. CONCLUSION: Our study highlighted that an MRI-based radiomics signature can effectively identify the 1p/19q co-deletion in histopathologically diagnosed lower-grade gliomas, thereby offering the potential to facilitate non-invasive molecular subtype prediction of gliomas.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Deleção Cromossômica , Cromossomos Humanos Par 19 , Cromossomos Humanos Par 1 , Glioma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Adolescente , Adulto , Idoso , Área Sob a Curva , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Glioma/genética , Glioma/patologia , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Curva ROC , Estudos Retrospectivos , Adulto Jovem
12.
Eur Radiol ; 28(9): 3692-3701, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29572634

RESUMO

PURPOSE: To make individualised preoperative prediction of non-functioning pituitary adenoma (NFPAs) subtypes between null cell adenomas (NCAs) and other subtypes using a radiomics approach. METHODS: We enrolled 112 patients (training set: n = 75; test set: n = 37) with complete T1-weighted magnetic resonance imaging (MRI) and contrast-enhanced T1-weighted MRI (CE-T1). A total of 1482 quantitative imaging features were extracted from T1 and CE-T1 images. Support vector machine trained a predictive model that was validated using a receiver operating characteristics (ROC) analysis on an independent test set. Moreover, a nomogram was constructed incorporating clinical characteristics and the radiomics signature for individual prediction. RESULTS: T1 image features yielded area under the curve (AUC) values of 0.8314 and 0.8042 for the training and test sets, respectively, while CE-T1 image features provided no additional contribution to the predictive model. The nomogram incorporating sex and the T1 radiomics signature yielded good calibration in the training and test sets (concordance index (CI) = 0.854 and 0.857, respectively). CONCLUSION: This study focused on the preoperative prediction of NFPA subtypes between NCAs and others using a radiomics approach. The developed model yielded good performance, indicating that radiomics had good potential for the preoperative diagnosis of NFPAs. KEY POINTS: • MRI may help in the pre-operative diagnosis of NFPAs subtypes • Retrospective study showed T1-weighted MRI more useful than CE-T1 in NCAs diagnosis • Treatment decision making becomes more individualised • Radiomics approach had potential for classification of NFPAs.


Assuntos
Adenoma/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neoplasias Hipofisárias/diagnóstico por imagem , Cuidados Pré-Operatórios/métodos , Adenoma/patologia , Meios de Contraste , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Nomogramas , Hipófise/diagnóstico por imagem , Hipófise/patologia , Neoplasias Hipofisárias/patologia , Curva ROC , Reprodutibilidade dos Testes , Estudos Retrospectivos , Máquina de Vetores de Suporte
16.
Chemistry ; 21(44): 15806-19, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26358912

RESUMO

A new family of resorcin[4]arene-based metal-organic frameworks (MOFs), namely, [Eu(HL)(DMF)(H2 O)2 ]⋅3 H2 O (1), [Tb(HL)(DMF)(H2 O)2 ] 3 H2 O (2), [Cd4 (L)2 (DMF)4 (H2 O)2 ] 3 H2 O (3) and [Zn3 (HL)2 (H2 O)2 ] 2 DMF⋅7 H2 O (4), have been constructed from a new resorcin[4]arene-functionalized tetracarboxylic acid (H4 L=2,8,14,20-tetra-ethyl-6,12,18,24-tetra-methoxy-4,10,16,22-tetra-carboxy-methoxy-calix[4]arene). Isostructural 1 and 2 exhibit charming 1D motifs built with the cup-like HL(3-) anions and rare earth cations. Compounds 3 and 4 show a unique sandwich-based 2D layer and a fascinating 3D framework, respectively. Remarkably, compounds 1 and 2 display intensive red and green emissions triggered by the efficient antenna effect of organic ligands under UV light. More importantly, systematic luminescence studies demonstrate that Ln-MOFs 1 and 2, as efficient multifunctional fluorescent materials, show highly selective and sensitive sensing of Fe(3+) , polyoxometalates (POMs), and acetone, which represents a rare example of a sensor for quantitatively detecting three different types of analytes. This is also an exceedingly rare example of Fe(3+) and POMs detection in aqueous solutions employing resorcin[4]arene-based luminescent Ln-MOFs. Furthermore, the possible mechanism of the sensing properties is deduced.

17.
Int J Radiat Oncol Biol Phys ; 119(5): 1590-1600, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432286

RESUMO

PURPOSE: To develop and externally validate an automatic artificial intelligence (AI) tool for delineating gross tumor volume (GTV) in patients with esophageal squamous cell carcinoma (ESCC), which can assist in neo-adjuvant or radical radiation therapy treatment planning. METHODS AND MATERIALS: In this multi-institutional study, contrast-enhanced CT images from 580 eligible ESCC patients were retrospectively collected. The GTV contours delineated by 2 experts via consensus were used as ground truth. A 3-dimensional deep learning model was developed for GTV contouring in the training cohort and internally and externally validated in 3 validation cohorts. The AI tool was compared against 12 board-certified experts in 25 patients randomly selected from the external validation cohort to evaluate its assistance in improving contouring performance and reducing variation. Contouring performance was measured using dice similarity coefficient (DSC) and average surface distance. Additionally, our previously established radiomics model for predicting pathologic complete response was used to compare AI-generated and ground truth contours, to assess the potential of the AI contouring tool in radiomics analysis. RESULTS: The AI tool demonstrated good GTV contouring performance in multicenter validation cohorts, with median DSC values of 0.865, 0.876, and 0.866 and median average surface distance values of 0.939, 0.789, and 0.875 mm, respectively. Furthermore, the AI tool significantly improved contouring performance for half of 12 board-certified experts (DSC values, 0.794-0.835 vs 0.856-0.881, P = .003-0.048), reduced the intra- and interobserver variations by 37.4% and 55.2%, respectively, and saved contouring time by 77.6%. In the radiomics analysis, 88.7% of radiomic features from ground truth and AI-generated contours demonstrated stable reproducibility, and similar pathologic complete response prediction performance for these contours (P = .430) was observed. CONCLUSIONS: Our AI contouring tool can improve GTV contouring performance and facilitate radiomics analysis in ESCC patients, which indicates its potential for GTV contouring during radiation therapy treatment planning and radiomics studies.


Assuntos
Aprendizado Profundo , Neoplasias Esofágicas , Tomografia Computadorizada por Raios X , Carga Tumoral , Humanos , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/patologia , Tomografia Computadorizada por Raios X/métodos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Meios de Contraste , Idoso , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Carcinoma de Células Escamosas do Esôfago/radioterapia , Carcinoma de Células Escamosas do Esôfago/patologia , Planejamento da Radioterapia Assistida por Computador/métodos , Adulto
18.
Health Data Sci ; 3: 0005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38487199

RESUMO

Importance: Digestive system neoplasms (DSNs) are the leading cause of cancer-related mortality with a 5-year survival rate of less than 20%. Subjective evaluation of medical images including endoscopic images, whole slide images, computed tomography images, and magnetic resonance images plays a vital role in the clinical practice of DSNs, but with limited performance and increased workload of radiologists or pathologists. The application of artificial intelligence (AI) in medical image analysis holds promise to augment the visual interpretation of medical images, which could not only automate the complicated evaluation process but also convert medical images into quantitative imaging features that associated with tumor heterogeneity. Highlights: We briefly introduce the methodology of AI for medical image analysis and then review its clinical applications including clinical auxiliary diagnosis, assessment of treatment response, and prognosis prediction on 4 typical DSNs including esophageal cancer, gastric cancer, colorectal cancer, and hepatocellular carcinoma. Conclusion: AI technology has great potential in supporting the clinical diagnosis and treatment decision-making of DSNs. Several technical issues should be overcome before its application into clinical practice of DSNs.

19.
Heliyon ; 9(3): e14030, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36923854

RESUMO

Background: This study aimed to develop an artificial intelligence-based computer-aided diagnosis system (AI-CAD) emulating the diagnostic logic of radiologists for lymph node metastasis (LNM) in esophageal squamous cell carcinoma (ESCC) patients, which contributed to clinical treatment decision-making. Methods: A total of 689 ESCC patients with PET/CT images were enrolled from three hospitals and divided into a training cohort and two external validation cohorts. 452 CT images from three publicly available datasets were also included for pretraining the model. Anatomic information from CT images was first obtained automatically using a U-Net-based multi-organ segmentation model, and metabolic information from PET images was subsequently extracted using a gradient-based approach. AI-CAD was developed in the training cohort and externally validated in two validation cohorts. Results: The AI-CAD achieved an accuracy of 0.744 for predicting pathological LNM in the external cohort and a good agreement with a human expert in two external validation cohorts (kappa = 0.674 and 0.587, p < 0.001). With the aid of AI-CAD, the human expert's diagnostic performance for LNM was significantly improved (accuracy [95% confidence interval]: 0.712 [0.669-0.758] vs. 0.833 [0.797-0.865], specificity [95% confidence interval]: 0.697 [0.636-0.753] vs. 0.891 [0.851-0.928]; p < 0.001) among patients underwent lymphadenectomy in the external validation cohorts. Conclusions: The AI-CAD could aid in preoperative diagnosis of LNM in ESCC patients and thereby support clinical treatment decision-making.

20.
Magn Reson Imaging ; 91: 81-90, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636572

RESUMO

OBJECTIVES: To build radiomics based OS prediction tools for local advanced cervical cancer (LACC) patients treated by concurrent chemoradiotherapy (CCRT) alone or followed by adjuvant chemotherapy (ACT). And, to construct adjuvant chemotherapy decision aid. METHODS: 83 patients treated by ACT following CCRT and 47 patients treated by CCRT were included in the ACT cohort and non-ACT cohort. Radiomics features extracted from primary tumor area of T2-weighted MRI. Two radiomics models were built for ACT and non-ACT cohort in prediction of 3 years overall survival (OS). Elastic Net Regression was applied to the the ACT cohort, meanwhile least absolute shrinkage and selection operator plus support vector machine was applied to the non-ACT cohort. Cox regression models was used in clinical features selection and OS predicting nomograms building. RESULT: The two radiomics models predicted the 3 years OS of two cohorts. The receiver operator characteristics analysis was used to evaluate the 3 years OS prediction performance of the two radiomics models. The area under the curve of ACT and non-ACT cohort model were 0.832 and 0.879, respectively. Patients were stratified into low-risk group and high-risk group determined by radiomics models and nomograms, respectively. And, the low-risk group patients present significantly increased OS, progression-free survival, local regional control, and metastasis free survival compare with high-risk group (P < 0.05). Meanwhile the prognosis prediction performance of radiomics model and nomogram is superior to the prognosis prediction performance of Figo stage. CONCLUSION: The two radiomics model and the two nomograms is a prognosis predictor of LACC patients treated by CCRT alone or followed by ACT.


Assuntos
Neoplasias do Colo do Útero , Quimiorradioterapia , Quimioterapia Adjuvante/efeitos adversos , Feminino , Humanos , Imageamento por Ressonância Magnética , Estadiamento de Neoplasias , Estudos Retrospectivos , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa