RESUMO
Aeromonas hydrophila, a prevalent pathogen in the aquaculture industry, poses significant challenges due to its drug-resistant strains. Moreover, residues of antibiotics like streptomycin, extensively employed in aquaculture settings, drive selective bacterial evolution, leading to the progressive development of resistance to this agent. However, the underlying mechanism of its intrinsic adaptation to antibiotics remains elusive. Here, we employed a quantitative proteomics approach to investigate the differences in protein expression between A. hydrophila under streptomycin (SM) stress and nonstress conditions. Notably, bioinformatics analysis unveiled the potential involvement of metal pathways, including metal cluster binding, iron-sulfur cluster binding, and transition metal ion binding, in influencing A. hydrophila's resistance to SM. Furthermore, we evaluated the sensitivity of eight gene deletion strains related to streptomycin and observed the potential roles of petA and AHA_4705 in SM resistance. Collectively, our findings enhance the understanding of A. hydrophila's response behavior to streptomycin stress and shed light on its intrinsic adaptation mechanism.
Assuntos
Adaptação Fisiológica , Aeromonas hydrophila , Antibacterianos , Proteínas de Bactérias , Proteômica , Estreptomicina , Aeromonas hydrophila/efeitos dos fármacos , Aeromonas hydrophila/genética , Aeromonas hydrophila/metabolismo , Estreptomicina/farmacologia , Proteômica/métodos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Adaptação Fisiológica/genética , Farmacorresistência Bacteriana/genéticaRESUMO
The colicin I receptor (CirA) is a well-studied outer membrane protein that has been reported to play important roles in antibiotic resistance, virulence, and iron homeostasis, although its exact physiological roles require further investigation. In this study, differentially expressed proteins between the ΔahcirA and wild-type (WT) strains of Aeromonas hydrophila were compared using quantitative proteomics. Bioinformatics analysis revealed that the expression of peptide, histidine, and arginine ATP-binding cassette (ABC) transporter system-related proteins was significantly higher in the ΔahcirA strain. Subsequent growth assays revealed that ΔahcirA grew slower than the WT strain in nutrient-limited medium when supplemented with dipeptide, histidine, and arginine as the carbon source. Far-western blot analysis further confirmed that AhCirA can directly bind to histidine/arginine and dipeptide small-molecule substrates in addition to their periplasmic-binding proteins, AhDppA and AhHisJ, respectively. These results indicate that AhCirA may play an important role in the uptake of amino acids and peptides as a channel-forming porin while also directly interacting with ABC transporters to transport nutrient substances into the plasma membrane. Overall, this study demonstrates that AhCirA is a multifunctional protein in A. hydrophila and extends our understanding of known nutrient transport mechanisms among bacteria.