Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293020

RESUMO

STAT3 plays a protective role against ischemic brain injury; however, it is not clear which brain cell type mediates this effect, and by which mechanism. We tested the hypothesis that endothelial STAT3 contributes to protection from cerebral ischemia, by preserving cerebrovascular endothelial function and blood-brain barrier (BBB) integrity. The objective of this study was to determine the role of STAT3 in cerebrovascular endothelial cell (EC) survival and function, and its role in tissue outcome after cerebral ischemia. We found that in primary mouse brain microvascular ECs, STAT3 was constitutively active, and its phosphorylation was reduced by oxygen-glucose deprivation (OGD), recovering after re-oxygenation. STAT3 inhibition, using two mechanistically different pharmacological inhibitors, increased EC injury after OGD. The sub-lethal inhibition of STAT3 caused endothelial dysfunction, demonstrated by reduced nitric oxide release in response to acetylcholine and reduced barrier function of the endothelial monolayer. Finally, mice with reduced endothelial STAT3 (Tie2-Cre; STAT3flox/wt) sustained larger brain infarcts after middle cerebral artery occlusion (MCAO) compared to wild-type (WT) littermates. We conclude that STAT3 is vital to maintaining cerebrovascular integrity, playing a role in EC survival and function, and protection against cerebral ischemia. Endothelial STAT3 may serve as a potential target in preventing endothelial dysfunction after stroke.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Animais , Camundongos , Óxido Nítrico/metabolismo , Acetilcolina/metabolismo , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Lesões Encefálicas/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063817

RESUMO

Soluble epoxide hydrolase (sEH) is abundant in the brain, is upregulated in type 2 diabetes mellitus (DM2), and is possible mediator of ischemic injury via the breakdown of neuroprotective epoxyeicosatrienoic acids (EETs). Prophylactic, pre-ischemic sEH blockade with 4-[[trans-4-[[(tricyclo[3.3.1.13,7]dec-1-ylamino)carbonyl]amino]cyclohexyl]oxy]-benzoic acid (tAUCB) reduces stroke-induced infarct in normal and diabetic mice, with larger neuroprotection in DM2. The present study tested whether benefit occurs in normal and DM2 mice if tAUCB is administered after stroke onset. We performed 60 min middle cerebral artery occlusion in young adult male C57BL mice divided into four groups: normal or DM2, with t-AUCB 2 mg/kg or vehicle 30 min before reperfusion. Endpoints were (1) cerebral blood flow (CBF) by laser Doppler, and (2) brain infarct at 24 h. In nondiabetic mice, t-AUCB reduced infarct size by 30% compared to vehicle-treated mice in the cortex (31.4 ± 4 vs. 43.8 ± 3 (SEM)%, respectively) and 26% in the whole hemisphere (26.3 ± 3 vs. 35.2 ± 2%, both p < 0.05). In contrast, in DM2 mice, tAUCB failed to ameliorate either cortical or hemispheric injury. No differences were seen in CBF. We conclude that tAUCB administered after ischemic stroke onset exerts brain protection in nondiabetic but not DM2 mice, that the neuroprotection appears independent of changes in gross CBF, and that DM2-induced hyperglycemia abolishes t-AUCB-mediated neuroprotection after stroke onset.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Epóxido Hidrolases/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Acidente Vascular Cerebral/metabolismo , Animais , Benzoatos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Circulação Cerebrovascular/efeitos dos fármacos , Infarto da Artéria Cerebral Média/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Acidente Vascular Cerebral/tratamento farmacológico , Ureia/análogos & derivados , Ureia/farmacologia
3.
Am J Physiol Heart Circ Physiol ; 306(7): H929-37, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24508640

RESUMO

Stroke risk and outcome are strongly modified by estrogen. In addition to ovaries, estrogen is produced locally in peripheral tissue by the enzyme aromatase, and extragonadal synthesis becomes the major source of estrogen after menopause. Aromatase gene deletion in female mice exacerbates ischemic brain damage after stroke. However, it is not clear which cell type is responsible for this effect, since aromatase is expressed in multiple cell types, including cerebrovascular endothelium. We tested the hypothesis that cerebrovascular aromatase contributes to sex differences in cerebrovascular endothelial function. Cerebrocortical microvascular responses to the endothelium-dependent vasodilator ACh were compared between male and female wild-type (WT) and aromatase knockout (ArKO) mice by measuring laser-Doppler perfusion in vivo through a closed cranial window. Additional studies were performed in WT mice treated with the aromatase inhibitor fadrozole or vehicle. WT female mice had significantly greater responses to ACh compared with WT males (P < 0.001), which was associated with higher aromatase expression in female compared with male cerebral vessels (P < 0.05). ACh responses were significantly lower in ArKO compared with WT females (P < 0.05) and in WT females treated with fadrozole versus vehicle (P < 0.001). Conversely, ACh responses were significantly higher in ArKO versus WT males (P < 0.05). Levels of phosphorylated endothelial nitric oxide synthase (eNOS) were lower in ArKO versus WT female brains, but were not altered by aromatase deletion in males. We conclude that cerebrovascular endothelial aromatase plays an important and sexually dimorphic role in cerebrovascular function and that aromatase inhibitors in clinical use may have cardiovascular consequences in both males and females.


Assuntos
Aromatase/metabolismo , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular , Endotélio Vascular/enzimologia , Microcirculação , Microvasos/enzimologia , Acetilcolina/farmacologia , Animais , Aromatase/deficiência , Aromatase/genética , Inibidores da Aromatase/farmacologia , Velocidade do Fluxo Sanguíneo , Circulação Cerebrovascular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Fadrozol/farmacologia , Feminino , Fluxometria por Laser-Doppler , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microcirculação/efeitos dos fármacos , Microvasos/efeitos dos fármacos , Microvasos/fisiopatologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Caracteres Sexuais , Fatores Sexuais , Vasodilatadores/farmacologia
4.
Transl Stroke Res ; 14(5): 766-775, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36181628

RESUMO

No current treatments target microvascular reperfusion after stroke, which can contribute to poor outcomes even after successful clot retrieval. The G protein-coupled receptor GPR39 is expressed in brain peri-capillary pericytes, and has been implicated in microvascular regulation, but its role in stroke is unknown. We tested the hypothesis that GPR39 plays a protective role after stroke, in part due to preservation of microvascular perfusion. We generated GPR39 knockout (KO) mice and tested whether GPR39 gene deletion worsens capillary blood flow and exacerbates brain injury and functional deficit after focal cerebral ischemia. Stroke was induced in male and female GPR39 KO and WT littermates by 60-min middle cerebral artery occlusion (MCAO). Microvascular perfusion was assessed via capillary red blood cell (RBC) flux in deep cortical layers in vivo using optical microangiography (OMAG). Brain injury was assessed by measuring infarct size by 2,3,5-triphenyltetrazolium chloride staining at 24 h or brain atrophy at 3 weeks after ischemia. Pole and cylinder behavior tests were conducted to assess neurological function deficit at 1 and 3 weeks post-stroke. Male but not female GPR39 KO mice exhibited larger infarcts and lower capillary RBC flux than WT controls after stroke. Male GPR39 KO mice also exhibited worse neurologic deficit at 1 week post-stroke, though functional deficit disappeared in both groups by 3 weeks. GPR39 deletion worsens brain injury, microvascular perfusion, and neurological function after experimental stroke. Results indicate that GPR39 plays a sex-dependent role in re-establishing microvascular flow and limiting ischemic brain damage after stroke.


Assuntos
Isquemia Encefálica , Receptores Acoplados a Proteínas G , Acidente Vascular Cerebral , Animais , Masculino , Camundongos , Isquemia Encefálica/genética , Infarto da Artéria Cerebral Média , Camundongos Knockout , Microcirculação , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Acidente Vascular Cerebral/genética
5.
Vasc Endovascular Surg ; 56(3): 244-252, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34961389

RESUMO

OBJECTIVE: Tobacco smoke exposure is a major risk factor for aortic aneurysm development. However, the initial aortic response to tobacco smoke, preceding aneurysm formation, is not well understood. We sought to create a model to determine the effect of solubilized tobacco smoke (STS) on the thoracic and abdominal aorta of mice as well as on cultured human aortic smooth muscle cells (HASMCs). METHODS: Tobacco smoke was solubilized and delivered to mice via implanted osmotic minipumps. Twenty male C57BL/6 mice received STS or vehicle infusion. The descending thoracic, suprarenal abdominal, and infrarenal abdominal segments of the aorta were assessed for elastic lamellar damage, smooth muscle cell phenotype, and infiltration of inflammatory cells. Cultured HASMCs grown in media containing STS were compared to cells grown in standard media in order to verify our in vivo findings. RESULTS: Tobacco smoke solution caused significantly more breaks in the elastic lamellae of the thoracic and abdominal aorta compared to control solution (P< .0001) without inciting an inflammatory infiltrate. Elastin breaks occurred more frequently in the abdominal aorta than the thoracic aorta (P < .01). Exposure to STS-induced aortic microdissections and downregulation of α-smooth muscle actin (α-SMA) by vascular smooth muscle cells (VSMCs). Treatment of cultured HASMCs with STS confirmed the decrease in α-SMA expression. CONCLUSION: Delivery of STS via osmotic minipumps appears to be a promising model for investigating the early aortic response to tobacco smoke exposure. The initial effect of tobacco smoke exposure on the aorta is elastic lamellar damage and downregulation of (α-SMA) expression by VSMCs. Elastic lamellar damage occurs more frequently in the abdominal aorta than the thoracic aorta and does not seem to be mediated by the presence of macrophages or other inflammatory cells.


Assuntos
Aneurisma da Aorta Abdominal , Poluição por Fumaça de Tabaco , Animais , Aorta Abdominal , Aneurisma da Aorta Abdominal/induzido quimicamente , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular , Miócitos de Músculo Liso/metabolismo , Nicotiana , Poluição por Fumaça de Tabaco/efeitos adversos , Resultado do Tratamento
6.
NPJ Aging ; 8(1): 9, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35927273

RESUMO

Soluble epoxide hydrolase (sEH) is upregulated in microvascular endothelium of human brain with vascular cognitive impairment (VCI). Transgenic endothelial expression of human sEH in mice (Tie2hsEH) induces endothelial dysfunction (ED), a pathogenetic mechanism of VCI. We sought to determine if endothelial upregulation of sEH is sufficient to cause cognitive impairment, and if cognitive impairment due to chronic hypoperfusion induced by unilateral common carotid artery occlusion (CCAO) is exacerbated in Tie2hsEH mice. Behavioral performance was assessed by the open field, rotarod, novel object, Morris water maze and fear conditioning tests. Cerebral blood flow and brain morphology were evaluated by MRI, and inflammatory changes investigated using immunohistochemistry and flow cytometry. We demonstrate that transgenic endothelial expression of sEH is sufficient to induce cognitive impairment, associated with leukocyte infiltration, brain atrophy and accelerated, age-dependent ventriculomegaly, identifying ED and sEH upregulation as potential underlying mechanisms and therapeutic targets for VCI.

7.
Front Cell Neurosci ; 15: 762843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34819839

RESUMO

Neurovascular coupling, the process by which neuronal activity elicits increases in the local blood supply, is impaired in stroke patients in brain regions outside the infarct. Such impairment may contribute to neurological deterioration over time, but its mechanism is unknown. Using the middle cerebral artery occlusion (MCAO) model of stroke, we show that neuronal activity-evoked capillary dilation is reduced by ∼75% in the intact cortical tissue outside the infarct border. This decrease in capillary responsiveness was not explained by a decrease in local neuronal activity or a loss of vascular contractility. Inhibiting synthesis of the vasoconstrictive molecule 20-hydroxyeicosatetraenoic acid (20-HETE), either by inhibiting its synthetic enzyme CYP450 ω-hydroxylases or by increasing nitric oxide (NO), which is a natural inhibitor of ω-hydroxylases, rescued activity-evoked capillary dilation. The capillary dilation unmasked by inhibiting 20-HETE was dependent on PGE2 activation of endoperoxide 4 (EP4) receptors, a vasodilatory pathway previously identified in healthy animals. Cortical 20-HETE levels were increased following MCAO, in agreement with data from stroke patients. Inhibition of ω-hydroxylases normalized 20-HETE levels in vivo and increased cerebral blood flow in the peri-infarct cortex. These data identify 20-HETE-dependent vasoconstriction as a mechanism underlying capillary neurovascular coupling impairment after stroke. Our results suggest that the brain's energy supply may be significantly reduced after stroke in regions previously believed to be asymptomatic and that ω-hydroxylase inhibition may restore healthy neurovascular coupling post-stroke.

8.
Alzheimers Dement (N Y) ; 7(1): e12214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34692987

RESUMO

INTRODUCTION: The pathogenesis of vascular cognitive impairment (VCI) is not fully understood. GPR39, an orphan G-protein coupled receptor, is implicated in neurological disorders but its role in VCI is unknown. METHODS: We performed GPR39 immunohistochemical analysis in post mortem brain samples from mild cognitive impairment (MCI) and control subjects. DNA was analyzed for GPR39 single nucleotide polymorphisms (SNPs), and correlated with white matter hyperintensity (WMH) burden on pre mortem magnetic resonance imaging. RESULTS: GPR39 is expressed in aged human dorsolateral prefrontal cortex, localized to microglia and peri-capillary cells resembling pericytes. GPR39-capillary colocalization, and density of GPR39-expressing microglia was increased in aged brains compared to young. SNP distribution was equivalent between groups; however, homozygous SNP carriers were present only in the MCI group, and had higher WMH volume than wild-type or heterozygous SNP carriers. DISCUSSION: GPR39 may play a role in aging-related VCI, and may serve as a therapeutic target and biomarker for the risk of developing VCI.

9.
J Cereb Blood Flow Metab ; 41(8): 1873-1885, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33853406

RESUMO

Local blood flow in the brain is tightly coupled to metabolic demands, a phenomenon termed functional hyperemia. Both capillaries and arterioles contribute to the hyperemic response to neuronal activity via different mechanisms and timescales. The nature and specific signaling involved in the hyperemic response of capillaries versus arterioles, and their temporal relationship are not fully defined. We determined the time-dependent changes in capillary flux and diameter versus arteriolar velocity and flow following whisker stimulation using optical microangiography (OMAG) and two-photon microscopy. We further characterized depth-resolved responses of individual capillaries versus capillary networks. We hypothesized that capillaries respond first to neuronal activation, and that they exhibit a coordinated response mediated via endothelial-derived epoxyeicosatrienoates (EETs) acting on pericytes. To visualize peri-capillary pericytes, we used Tie2-GFP/NG2-DsRed mice, and to determine the role of endothelial-derived EETs, we compared cerebrovascular responses to whisker stimulation between wild-type mice and mice with lower endothelial EETs (Tie2-hsEH). We found that capillaries respond immediately to neuronal activation in an orchestrated network-level manner, a response attenuated in Tie2-hsEH and inhibited by blocking EETs action on pericytes. These results demonstrate that capillaries are first responders during functional hyperemia, and that they exhibit a network-level response mediated via endothelial-derived EETs' action on peri-capillary pericytes.


Assuntos
Capilares/fisiologia , Endotélio/metabolismo , Neurônios/fisiologia , Pericitos/metabolismo , Fluxo Sanguíneo Regional/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Arteríolas/fisiologia , Capilares/efeitos dos fármacos , Estimulação Elétrica , Epóxido Hidrolases/metabolismo , Hiperemia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência por Excitação Multifotônica , Tomografia de Coerência Óptica , Vasoconstrição/efeitos dos fármacos
10.
Nat Commun ; 12(1): 1274, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627658

RESUMO

High-throughput single-cell epigenomic assays can resolve cell type heterogeneity in complex tissues, however, spatial orientation is lost. Here, we present single-cell combinatorial indexing on Microbiopsies Assigned to Positions for the Assay for Transposase Accessible Chromatin, or sciMAP-ATAC, as a method for highly scalable, spatially resolved, single-cell profiling of chromatin states. sciMAP-ATAC produces data of equivalent quality to non-spatial sci-ATAC and retains the positional information of each cell within a 214 micron cubic region, with up to hundreds of tracked positions in a single experiment. We apply sciMAP-ATAC to assess cortical lamination in the adult mouse primary somatosensory cortex and in the human primary visual cortex, where we produce spatial trajectories and integrate our data with non-spatial single-nucleus RNA and other chromatin accessibility single-cell datasets. Finally, we characterize the spatially progressive nature of cerebral ischemic infarction in the mouse brain using a model of transient middle cerebral artery occlusion.


Assuntos
Encéfalo/metabolismo , Cromatina/metabolismo , Animais , Isquemia Encefálica/metabolismo , Núcleo Celular/metabolismo , Feminino , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/metabolismo , Camundongos
11.
Anesthesiology ; 112(2): 395-405, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20068453

RESUMO

BACKGROUND: Severe ischemia induces renal injury less frequently in women than men. In this study, cardiac arrest and cardiopulmonary resuscitation were used to assess whether estradiol is renoprotective via an estrogen receptor (ER)-dependent mechanism. MATERIALS AND METHODS: Male and female C57BL/6 and ER gene-deleted mice underwent 10 min of cardiac arrest followed by cardiopulmonary resuscitation. Serum chemistries and renal stereology were measured 24 h after arrest. RESULTS: Estrogen did not affect mean arterial pressure, regional renal cortical blood flow, and arterial blood gases. Hence, female kidneys were protected (mean +/- SEM: blood urea nitrogen, 65+/- 21 vs.149+/- 27 mg/dl, P = 0.04; creatinine, 0.14 +/- 0.05 vs. 0.73 +/- 0.16 mg/dl, P = 0.01; volume of necrotic tubules, 7 +/- 1% vs. 10 +/- 0%, P = 0.04). Estrogen also reduced renal injury. In intact females (n = 5), ovariectomized/vehicle-treated (n = 8), and ovariectomized/estrogen-treated (n = 8) animals, blood urea nitrogen was 65 +/- 21, 166 +/- 28, and 50 +/- 14 mg/dl (P = 0.002); creatinine was 0.14 +/- 0.05, 0.74 +/- 0.26, and 0.23 +/- 0.27 mg/dl (P = 0.014); necrotic tubules were 2.5 +/- 0.25%, 12.0 +/- 1.9%, and 5.0 +/- 1.6% (P = 0.004), respectively. In ER-[alpha] and ER-[beta] gene-deleted mice and controls estradiol-reduced functional injury (blood urea nitrogen: estradiol 117 +/- 71, vehicle 167 +/- 56, P = 0.007; creatinine: estradiol 0.5 +/- 0.5, vehicle 1.0 +/- 0.4, P = 0.013), but the effect of estradiol was not different between ER-[alpha] or ER-[beta] gene-deleted mice. Adding ICI 182,780 to estradiol did not alter injury. CONCLUSIONS: In women, kidneys were protected from cardiac arrest through estrogen. Estradiol-mediated renoprotection was not affected by ER deletion or blockade. Estradiol is renoprotective after cardiac arrest. The results indicate that estradiol renoprotection is ER-[alpha] and ER-[beta] independent.


Assuntos
Estradiol/farmacologia , Estrogênios/farmacologia , Estrogênios/fisiologia , Parada Cardíaca/complicações , Nefropatias/etiologia , Nefropatias/prevenção & controle , Substâncias Protetoras , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/urina , Animais , Análise Química do Sangue , Pressão Sanguínea/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/fisiologia , Feminino , Rim/patologia , Córtex Renal/irrigação sanguínea , Nefropatias/patologia , Lipocalina-2 , Lipocalinas/metabolismo , Lipocalinas/urina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/metabolismo , Proteínas Oncogênicas/urina , Ovariectomia , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Caracteres Sexuais
12.
Stroke ; 39(7): 2073-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18369166

RESUMO

BACKGROUND AND PURPOSE: Cytochrome P450 epoxygenase metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs). EETs are produced in the brain and perform important biological functions, including vasodilation and neuroprotection. However, EETs are rapidly metabolized via soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs). We tested the hypothesis that sEH gene deletion is protective against focal cerebral ischemia through enhanced collateral blood flow. METHODS: sEH knockout (sEHKO) mice with and without EETs antagonist 14, 15 epoxyeicosa-5(Z)-enoic acid (EEZE) were subjected to 2-hour middle cerebral artery occlusion (MCAO), and infarct size was measured at 24 hours of reperfusion and compared to wild-type (WT) mice. Local CBF rates were measured at the end of MCAO using iodoantipyrine (IAP) autoradiography, sEH protein was analyzed by Western blot and immunohistochemistry, and hydrolase activity and levels of EETs/DHETs were measured in brain and plasma using LC-MS/MS and ELISA, respectively. RESULTS: sEH immunoreactivity was detected in WT, but not sEHKO mouse brain, and was localized to vascular and nonvascular cells. 14,15-DHET was abundantly present in WT, but virtually absent in sEHKO mouse plasma. However, hydrolase activity and free 14,15-EET in brain tissue were not different between WT and sEHKO mice. Infarct size was significantly smaller, whereas regional cerebral blood flow rates were significantly higher in sEHKO compared to WT mice. Infarct size reduction was recapitulated by 14,15-EET infusion. However, 14,15-EEZE did not alter infarct size in sEHKO mice. CONCLUSIONS: sEH gene deletion is protective against ischemic stroke by a vascular mechanism linked to reduced hydration of circulating EETs.


Assuntos
Ácidos Araquidônicos/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Epóxido Hidrolases/genética , Epóxido Hidrolases/fisiologia , Deleção de Genes , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/prevenção & controle , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Autorradiografia , Encéfalo/patologia , Eicosanoides/metabolismo , Homozigoto , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
Front Biosci ; 13: 2833-41, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17981757

RESUMO

The protection from ischemic brain injury enjoyed by females is linked to the female sex hormone 17beta-estradiol. We tested the hypothesis that neuroprotection by estradiol entails the prevention of ischemia-induced inflammatory response, through suppression of the P450 eicosanoids-metabolizing enzyme soluble epoxide hydrolase (sEH). Ovariectomized female rats with and without estradiol replacement underwent 2-hour middle cerebral artery occlusion (MCAO). SEH expression was determined using Western blot, and inflammatory cytokine mRNA levels were measured at 6, 24 and 48 hours after MCAO. Cytokine mRNA was also measured in sEH-knockout mice, and in rats treated with sEH inhibitors. Estradiol reduced basal and post-ischemic sEH expression. MCAO strongly induced mRNA levels of tumor necrosis factor-alpha, interleukin 6, and interleukin 1beta, which was attenuated in sEH-knockouts, but not by sEH inhibitors. Estradiol replacement exhibited a bimodal effect on cytokine mRNA, with increased early and reduced delayed expression. While estradiol suppresses cerebral sEH expression, and sEH suppression diminishes inflammation after MCAO, our findings suggest that the effect of estrogen on inflammation is complex, and only partially explained by sEH suppression.


Assuntos
Isquemia Encefálica/metabolismo , Artérias Cerebrais/patologia , Epóxido Hidrolases/fisiologia , Regulação da Expressão Gênica , Infarto da Artéria Cerebral Média/patologia , Animais , Citocinas/metabolismo , Epóxido Hidrolases/metabolismo , Estrogênios/metabolismo , Feminino , Inflamação , Masculino , Camundongos , Modelos Biológicos , Ratos , Ratos Wistar
14.
Comp Med ; 58(6): 588-96, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19149416

RESUMO

Gender differences, sex steroid effects, and sex-specific candidate therapeutics in ischemic stroke have been studied in rodents but not in nonhuman primates. In this feasibility study (n = 3 per group), we developed a model of transient focal cerebral ischemia in adult male and female rhesus macaques that consistently includes white matter injury. The animals also were used to determine whether gender-linked differences in histopathologic outcomes could be evaluated in this model in future, larger preclinical trials. Histologic brain pathology was evaluated at 4 d after 90 min of reversible occlusion of the middle cerebral artery (MCA). MCA occlusion was accomplished by using a transorbital approach and temporary placement of an aneurysm clip. Male and female rhesus macaques 7 to 11 y of age were studied. Baseline and intraischemic blood glucose, systolic blood pressure, heart rate, oxygen saturation, end-tidal CO2, and rectal temperatures were not different among groups. The variability in injury volume was comparable to that observed in human focal cerebrovascular ischemia and in other nonhuman primate models using proximal MCA occlusion. In this small sample, the volume of injury was not different between male and female subjects, but observed variability was higher in female caudate nucleus, putamen, and hemisphere. This report is the first to compare cerebral ischemic outcomes in female and male rhesus macaques. The female rhesus macaque ischemic stroke model could be used after rodent studies to provide preclinical data for clinical trials in women.


Assuntos
Ataque Isquêmico Transitório/etiologia , Animais , Encéfalo/patologia , Dióxido de Carbono/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/fisiopatologia , Macaca mulatta , Masculino , Caracteres Sexuais , Especificidade da Espécie
15.
J Cereb Blood Flow Metab ; 27(12): 1931-40, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17440491

RESUMO

The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enhanced cerebral blood flow (CBF). We determined expression and distribution of sEH immunoreactivity (IR) in brain, and examined the effect of sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE) on CBF and infarct size after experimental stroke in mice. Mice were administered a single intraperitoneal injection of AUDA-BE (10 mg/kg) or vehicle at 30 mins before 2-h middle cerebral artery occlusion (MCAO) or at reperfusion, in the presence and absence of P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH). Immunoreactivity for sEH was detected in vascular and non-vascular brain compartments, with predominant expression in neuronal cell bodies and processes. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid butyl ester was detected in plasma and brain for up to 24 h after intraperitoneal injection, which was associated with inhibition of sEH activity in brain tissue. Finally, AUDA-BE significantly reduced infarct size at 24 h after MCAO, which was prevented by MS-PPOH. However, regional CBF rates measured by iodoantipyrine (IAP) autoradiography at end ischemia revealed no differences between AUDA-BE- and vehicle-treated mice. The findings suggest that sEH inhibition is protective against ischemic injury by non-vascular mechanisms, and that sEH may serve as a therapeutic target in stroke.


Assuntos
Adamantano/análogos & derivados , Inibidores Enzimáticos/uso terapêutico , Epóxido Hidrolases/antagonistas & inibidores , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/enzimologia , Ureia/análogos & derivados , Adamantano/farmacocinética , Adamantano/uso terapêutico , Animais , Antipirina/análogos & derivados , Autorradiografia , Barreira Hematoencefálica , Western Blotting , Capilares/patologia , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacocinética , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Cerebral Média/fisiopatologia , Proteínas do Tecido Nervoso/isolamento & purificação , Ureia/farmacocinética , Ureia/uso terapêutico
16.
J Neurosci Methods ; 270: 132-137, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27328369

RESUMO

BACKGROUND: Optical coherence tomography (OCT) is a non-invasive optical imaging method that has proven useful in various fields such as ophthalmology, dermatology and neuroscience. In ophthalmology, significant progress has been made in retinal layer segmentation and enhancement of OCT images. There are also segmentation algorithms to separate epidermal and dermal layers in OCT-acquired images of human skin. NEW METHOD: We describe simple image processing methods that allow automatic segmentation and enhancement of OCT images of rodent brain. RESULTS: We demonstrate the effectiveness of the proposed methods for OCT-based microangiography (OMAG) and tissue injury mapping (TIM) of mouse cerebral cortex. The results show significant improvement in image contrast, delineation of tissue injury, allowing visualization of different layers of capillary beds. COMPARISON WITH EXISTING METHODS: Previously reported methods for other applications are yet to be used in neuroscience due to the complexity of tissue anatomy, unique physiology and technical challenges. CONCLUSIONS: OCT is a promising tool that provides high resolution in vivo microvascular and structural images of rodent brain. By automatically segmenting and enhancing OCT images, structural and microvascular changes in mouse cerebral cortex after stroke can be monitored in vivo with high contrast.


Assuntos
Algoritmos , Encéfalo/diagnóstico por imagem , Reconhecimento Automatizado de Padrão/métodos , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Acidente Vascular Cerebral/diagnóstico por imagem
17.
J Cereb Blood Flow Metab ; 36(7): 1257-70, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26661233

RESUMO

Diabetes causes endothelial dysfunction and increases the risk of vascular cognitive impairment. However, it is unknown whether diabetes causes cognitive impairment due to reductions in cerebral blood flow or through independent effects on neuronal function and cognition. We addressed this using right unilateral common carotid artery occlusion to model vascular cognitive impairment and long-term high-fat diet to model type 2 diabetes in mice. Cognition was assessed using novel object recognition task, Morris water maze, and contextual and cued fear conditioning. Cerebral blood flow was assessed using arterial spin labeling magnetic resonance imaging. Vascular cognitive impairment mice showed cognitive deficit in the novel object recognition task, decreased cerebral blood flow in the right hemisphere, and increased glial activation in white matter and hippocampus. Mice fed a high-fat diet displayed deficits in the novel object recognition task, Morris water maze and fear conditioning tasks and neuronal loss, but no impairments in cerebral blood flow. Compared to vascular cognitive impairment mice fed a low fat diet, vascular cognitive impairment mice fed a high-fat diet exhibited reduced cued fear memory, increased deficit in the Morris water maze, neuronal loss, glial activation, and global decrease in cerebral blood flow. We conclude that high-fat diet and chronic hypoperfusion impair cognitive function by different mechanisms, although they share commons features, and that high-fat diet exacerbates vascular cognitive impairment pathology.


Assuntos
Encéfalo/irrigação sanguínea , Estenose das Carótidas/fisiopatologia , Circulação Cerebrovascular/fisiologia , Transtornos Cognitivos/etiologia , Diabetes Mellitus Experimental/fisiopatologia , Dieta Hiperlipídica/efeitos adversos , Animais , Comportamento Animal/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Artéria Carótida Primitiva/fisiopatologia , Estenose das Carótidas/complicações , Estenose das Carótidas/diagnóstico por imagem , Transtornos Cognitivos/fisiopatologia , Transtornos Cognitivos/psicologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/diagnóstico por imagem , Endotélio Vascular/fisiopatologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL
18.
Exp Neurol ; 279: 75-85, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26902473

RESUMO

OBJECTIVE: Cytochrome P450 epoxygenases (CYP) metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which exhibit vasodilatory, anti-inflammatory and neuroprotective actions in experimental cerebral ischemia. We evaluated the effect of endothelial-specific CYP overexpression on cerebral blood flow, inflammatory cytokine expression and tissue infarction after focal cerebral ischemia in transgenic mice. APPROACH AND RESULTS: Male and female wild-type and transgenic mice overexpressing either human CYP2J2 or CYP2C8 epoxygenases in vascular endothelium under control of the Tie2 promoter (Tie2-CYP2J2 and Tie2-CYP2C8) were subjected to 60-min middle cerebral artery occlusion (MCAO). Microvascular cortical perfusion was monitored during vascular occlusion and reperfusion using laser-Doppler flowmetry and optical imaging. Infarct size and inflammatory cytokines were measured at 24h of reperfusion by TTC and real-time quantitative PCR, respectively. Infarct size was significantly reduced in both Tie2-CYP2J2 and Tie2-CYP2C8 transgenic male mice compared to corresponding WT male mice (n=10 per group, p<0.05). Tie2-CYP2J2, but not Tie2-CYP2C8 male mice maintained higher blood flow during MCAO; however, both Tie2-CYP2J2 and Tie2-CYP2C8 had lower inflammatory cytokine expression after ischemia compared to corresponding WT males (n=10 per group for CBF and n=3 for cytokines, p<0.05). In females, a reduction in infarct was observed in the caudate-putamen, but not in the cortex or hemisphere as a whole and no differences were observed in blood flow between female transgenic and WT mice (n=10 per group). CONCLUSIONS: Overexpression of CYP epoxygenases in vascular endothelial cells protects against experimental cerebral ischemia in male mice. The mechanism of protection is in part linked to enhanced blood flow and suppression of inflammation, and is both sex- and CYP isoform-specific.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Sistema Enzimático do Citocromo P-450/genética , Endotélio Vascular/enzimologia , Neuroproteção , Animais , Hidrocarboneto de Aril Hidroxilases/biossíntese , Hidrocarboneto de Aril Hidroxilases/genética , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Isquemia Encefálica/fisiopatologia , Núcleo Caudado/patologia , Angiografia Cerebral , Circulação Cerebrovascular , Citocromo P-450 CYP2C8/biossíntese , Citocromo P-450 CYP2C8/genética , Citocromo P-450 CYP2J2 , Citocinas/biossíntese , Feminino , Humanos , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Putamen/patologia , Caracteres Sexuais
19.
Stroke ; 36(3): 670-2, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15692108

RESUMO

BACKGROUND AND PURPOSE: This study aimed to clarify the effect of statins on spontaneous stroke and to examine the antioxidative effect in artificial transient middle cerebral artery occlusion (tMCAO). METHODS: Stroke-prone spontaneous hypertensive rats (SHR-SP) were treated with pitavastatin, atorvastatin, simvastatin, or vehicle for 4 weeks. Physiological parameters, serum lipids, and infarct volumes were examined. The markers for oxidative stresses on lipids and DNA were immunohistochemically detected in vehicle-treated or simvastatin-treated SHR-SP with tMCAO. RESULTS: Atorvastatin and simvastatin decreased infarct volumes, with simvastatin most effective. Simvastatin significantly reduced immunoreactivities for oxidative stress markers for lipids and DNA in neurons after tMCAO. CONCLUSIONS: The results suggest that the antioxidative properties of statins may be implicated in their beneficial effects against neuronal damage in cerebral ischemia.


Assuntos
Hidroximetilglutaril-CoA Redutases/uso terapêutico , Infarto da Artéria Cerebral Média/prevenção & controle , Estresse Oxidativo/fisiologia , 8-Hidroxi-2'-Desoxiguanosina , Aldeídos/imunologia , Animais , Atorvastatina , Pressão Sanguínea/fisiologia , Peso Corporal/fisiologia , Desoxiguanosina/análogos & derivados , Desoxiguanosina/imunologia , Modelos Animais de Doenças , Ácidos Heptanoicos/uso terapêutico , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Lipídeos/sangue , Lisina/imunologia , Pirróis/uso terapêutico , Quinolinas/uso terapêutico , Ratos , Ratos Endogâmicos SHR , Sinvastatina/uso terapêutico , Análise de Sobrevida
20.
J Cereb Blood Flow Metab ; 35(9): 1416-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26126869

RESUMO

Soluble epoxide hydrolase (sEH) contributes to cardiovascular disease, including stroke, although the exact mechanism remains unclear. While primarily a cytosolic enzyme, sEH can translocate into peroxisomes. The relevance of this for stroke injury is not understood. We tested the hypothesis that sEH-mediated injury is tied to the cytoplasmic localization. We found that a human sEH variant possessing increased affinity to peroxisomes reduced stroke injury in sEH-null mice, whereas infarcts were significantly larger when peroxisomal translocation of sEH was disrupted. We conclude that sEH contributes to stroke injury only when localized in the cytoplasm, while peroxisomal sEH may be protective.


Assuntos
Isquemia Encefálica/enzimologia , Citosol/enzimologia , Epóxido Hidrolases/metabolismo , Peroxissomos/enzimologia , Acidente Vascular Cerebral/enzimologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Citosol/patologia , Epóxido Hidrolases/genética , Humanos , Camundongos , Camundongos Mutantes , Peroxissomos/genética , Peroxissomos/patologia , Transporte Proteico , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa