Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Nano Lett ; 24(4): 1160-1167, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38237067

RESUMO

An unexplored material of copper boride has been realized recently in two-dimensional form at a (111) surface of the fcc copper crystal. Here, one-dimensional (1-D) boron growth was observed on the Cu(110) surface, as probed by atomically resolved scanning probe microscopy. The 1-D copper boride was composed of quasi-periodic atomic chains periodically aligned parallel to each other, as confirmed by Fourier transform analysis. The 1-D growth unexpectedly proceeded across surface steps in a self-assembled manner and extended over several 100 nm. The long-range formation of a 1-D quasi-periodic structure on a surface has been theoretically modeled as a 1-D quasi-crystal and the predicted conditions matched the structural parameters obtained by the experimental work here. The quasi-periodic 1-D copper boride system enabled a way to examine 1-D quasi-crystallinity on an actual material.

2.
J Neuroinflammation ; 21(1): 70, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515139

RESUMO

Myeloperoxidase (MPO) plays critical role in the pathology of cerebral ischemia-reperfusion (I/R) injury via producing hypochlorous acid (HOCl) and inducing oxidative modification of proteins. High-mobility group box 1 (HMGB1) oxidation, particularly disulfide HMGB1 formation, facilitates the secretion and release of HMGB1 and activates neuroinflammation, aggravating cerebral I/R injury. However, the cellular sources of MPO/HOCl in ischemic brain injury are unclear yet. Whether HOCl could promote HMGB1 secretion and release remains unknown. In the present study, we investigated the roles of microglia-derived MPO/HOCl in mediating HMGB1 translocation and secretion, and aggravating the brain damage and blood-brain barrier (BBB) disruption in cerebral I/R injury. In vitro, under the co-culture conditions with microglia BV cells but not the single culture conditions, oxygen-glucose deprivation/reoxygenation (OGD/R) significantly increased MPO/HOCl expression in PC12 cells. After the cells were exposed to OGD/R, MPO-containing exosomes derived from BV2 cells were released and transferred to PC12 cells, increasing MPO/HOCl in the PC12 cells. The HOCl promoted disulfide HMGB1 translocation and secretion and aggravated OGD/R-induced apoptosis. In vivo, SD rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus different periods of reperfusion. Increased MPO/HOCl production was observed at the reperfusion stage, accomplished with enlarged infarct volume, aggravated BBB disruption and neurological dysfunctions. Treatment of MPO inhibitor 4-aminobenzoic acid hydrazide (4-ABAH) and HOCl scavenger taurine reversed those changes. HOCl was colocalized with cytoplasm transferred HMGB1, which was blocked by taurine in rat I/R-injured brain. We finally performed a clinical investigation and found that plasma HOCl concentration was positively correlated with infarct volume and neurological deficit scores in ischemic stroke patients. Taken together, we conclude that ischemia/hypoxia could activate microglia to release MPO-containing exosomes that transfer MPO to adjacent cells for HOCl production; Subsequently, the production of HOCl could mediate the translocation and secretion of disulfide HMGB1 that aggravates cerebral I/R injury. Furthermore, plasma HOCl level could be a novel biomarker for indexing brain damage in ischemic stroke patients.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Proteína HMGB1 , AVC Isquêmico , Traumatismo por Reperfusão , Humanos , Ratos , Animais , Ácido Hipocloroso , Microglia/metabolismo , Proteína HMGB1/metabolismo , Ratos Sprague-Dawley , Lesões Encefálicas/metabolismo , Isquemia Encefálica/metabolismo , Barreira Hematoencefálica/metabolismo , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Peroxidase/metabolismo , Taurina , Dissulfetos
3.
Neurobiol Dis ; 184: 106210, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37352984

RESUMO

The progressive neurodegenerative disease amyotrophic lateral sclerosis (ALS) is caused by a decline in motor neuron function, resulting in worsened motor impairments, malnutrition, respiratory failure and mortality, and there is a lack of effective clinical treatments. The exact mechanism of motor neuronal degeneration remains unclear. Previously, we reported that ferroptosis, which is characterized by the accumulation of lipid peroxide and glutathione depletion in an iron-dependent manner, contributed to motor neuronal death in ALS cell models with the hSOD1G93A (human Cu/Zn-superoxide dismutase) gene mutation. In this study, we further explored the role of ferroptosis in motor neurons and its regulation in mutant hSOD1G93A cell and mouse models. Our results showed that ferroptosis was activated in hSOD1G93A NSC-34 cells and mouse models, which was accompanied by decreased nuclear retention of nuclear factor erythroid 2-related factor 2 (NRF2) and downregulation of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) levels. Moreover, RTA-408, an NRF2 activator, inhibited ferroptosis in hSOD1G93A NSC-34 cells by upregulating the protein expression of SLC7A11 and GPX4. Moreover, hSOD1G93A mice treated with RTA-408 showed obvious improvements in body weight and motor function. Our study demonstrated that ferroptosis contributed to the toxicity of motor neurons and that activating NRF2 could alleviate neuronal degeneration in ALS with the hSOD1G93A mutation.


Assuntos
Esclerose Lateral Amiotrófica , Ferroptose , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação/genética , Doenças Neurodegenerativas/metabolismo , Neuroproteção , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
4.
J Exp Bot ; 74(18): 5783-5804, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37392434

RESUMO

Roses are significant botanical species with both ornamental and economic value, displaying diverse floral traits, particularly an extensive array of petal colors. The red pigmentation of rose petals is predominantly attributed to anthocyanin accumulation. However, the underlying regulatory mechanism of anthocyanin biosynthesis in roses remains elusive. This study presents a novel light-responsive regulatory module governing anthocyanin biosynthesis in rose petals, which involves the transcription factors RhHY5, RhMYB114a, and RhMYB3b. Under light conditions (1000-1500 µmol m-2 s-1), RhHY5 represses RhMYB3b expression and induces RhMYB114a expression, positively regulating anthocyanin biosynthesis in rose petals. Notably, activation of anthocyanin structural genes probably involves an interaction and synergy between RhHY5 and the MYB114a-bHLH3-WD40 complex. Additionally, RhMYB3b is activated by RhMYB114a to prevent excessive accumulation of anthocyanin. Conversely, under low light conditions (<10 µmol m-2 s-1), the degradation of RhHY5 leads to down-regulation of RhMYB114a and up-regulation of RhMYB3b, which in turn inhibits the expression of both RhMYB114a and anthocyanin structural genes. Additionally, RhMYB3b competes with RhMYB114a for binding to RhbHLH3 and the promoters of anthocyanin-related structural genes. Overall, our study uncovers a complex light-mediated regulatory network that governs anthocyanin biosynthesis in rose petals, providing new insights into the molecular mechanisms underlying petal color formation in rose.


Assuntos
Antocianinas , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Antocianinas/metabolismo , Flores/metabolismo , Proteínas de Plantas/metabolismo , Pigmentação/genética , Regulação da Expressão Gênica de Plantas
5.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298450

RESUMO

Carnations are one of the most popular ornamental flowers in the world with varied flower colors that have long attracted breeders and consumers alike. The differences in carnation flower color are mainly the result of the accumulation of flavonoid compounds in the petals. Anthocyanins are a type of flavonoid compound that produce richer colors. The expression of anthocyanin biosynthetic genes is mainly regulated by MYB and bHLH transcription factors. However, these TFs have not been comprehensively reported in popular carnation cultivars. Herein, 106 MYB and 125 bHLH genes were identified in the carnation genome. Gene structure and protein motif analyses show that members of the same subgroup have similar exon/intron and motif organization. Phylogenetic analysis combining the MYB and bHLH TFs from Arabidopsis thaliana separates the carnation DcaMYBs and DcabHLHs into 20 subgroups each. Gene expression (RNAseq) and phylogenetic analysis shows that DcaMYB13 in subgroup S4 and DcabHLH125 in subgroup IIIf have similar expression patterns to those of DFR, ANS, and GT/AT, which regulate anthocyanin accumulation, in the coloring of carnations, and in red-flowered and white-flowered carnations, DcaMYB13 and DcabHLH125 are likely the key genes responsible for the formation of red petals in carnations. These results lay a foundation for the study of MYB and bHLH TFs in carnations and provide valuable information for the functional verification of these genes in studies of tissue-specific regulation of anthocyanin biosynthesis.


Assuntos
Antocianinas , Dianthus , Humanos , Antocianinas/metabolismo , Dianthus/metabolismo , Filogenia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Flavonoides/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo
6.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770892

RESUMO

We have extensively searched for a cyclic hydrogenated boron molecule that has a three-center two-electron bond at the center. Using first-principles calculations, we discovered a stable molecule of 2:4:6:8:-2H-1,5:1,5-µH-B8H10 and propose its existence. This molecule can be regarded as a building block for sheets of topological hydrogen boride (borophane), which was recently theoretically proposed and experimentally discovered. The electronic structure of the cyclic hydrogenated boron molecule is discussed in comparison with that of cyclic hydrogenated carbon molecules.

7.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049748

RESUMO

We present an enhanced method for synthesizing sheets of borophane. Despite the challenges associated with low efficiency, we discovered that incorporating hydrochloric acid into the ion-exchange reaction significantly improved the production yield from 20% to over 50%. After a thorough examination of the reaction, we gained insight into the underlying mechanisms and found that the use of hydrochloric acid provides two key benefits: accelerated production of borophene and isolation of high-purity products. This method has the potential to pave the way for the production of novel topological 2D materials with potential industrial applications.

8.
Geriatr Nurs ; 53: 170-174, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37540912

RESUMO

OBJECTIVES: Falls are the leading cause of injury-related hospitalization in older adult, presenting a significant public health concern. To examine the specific eye diseases for risk factors of falls in the older adult. METHODS: A total of 775 older adults admitted to tertiary care hospitals were divided into a fall or non-fall group based on a questionnaire. Logistic regression analysis was used to identify factors associated with falls. RESULTS: With 208 falls, 775 participants were recruited. The major associated factors of falls were older age (Odds ratios [OR]: 1.05), female (OR: 1.91), cardiovascular diseases (OR: 1.65), more outdoor activities (OR: 2.81), cataract (OR: 1.65), glaucoma (OR: 1.63), diabetic retinopathy (OR: 2.72). CONCLUSIONS: Our study demonstrates that cataract, glaucoma, and diabetic retinopathy in the older adult with eye diseases are independent risk factors of falls, which may shed light on the prevention of falls in the older adult with eye diseases.


Assuntos
Catarata , Diabetes Mellitus , Retinopatia Diabética , Glaucoma , Feminino , Humanos , Idoso , Retinopatia Diabética/complicações , Glaucoma/complicações , Catarata/complicações , Fatores de Risco , Inquéritos e Questionários
9.
Plant Biotechnol J ; 20(6): 1182-1196, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35247284

RESUMO

Carnation (Dianthus caryophyllus) is one of the most popular ornamental flowers in the world. Although numerous studies on carnations exist, the underlying mechanisms of flower color, fragrance, and the formation of double flowers remain unknown. Here, we employed an integrated multi-omics approach to elucidate the genetic and biochemical pathways underlying the most important ornamental features of carnation flowers. First, we assembled a high-quality chromosome-scale genome (636 Mb with contig N50 as 14.67 Mb) of D. caryophyllus, the 'Scarlet Queen'. Next, a series of metabolomic datasets was generated with a variety of instrumentation types from different parts of the flower at multiple stages of development to assess spatial and temporal differences in the accumulation of pigment and volatile compounds. Finally, transcriptomic data were generated to link genomic, biochemical, and morphological patterns to propose a set of pathways by which ornamental traits such as petal coloration, double flowers, and fragrance production are formed. Among them, the transcription factors bHLHs, MYBs, and a WRKY44 homolog are proposed to be important in controlling petal color patterning and genes such as coniferyl alcohol acetyltransferase and eugenol synthase are involved in the synthesis of eugenol. The integrated dataset of genomics, transcriptomics, and metabolomics presented herein provides an important foundation for understanding the underlying pathways of flower development and coloration, which in turn can be used for selective breeding and gene editing for the development of novel carnation cultivars.


Assuntos
Dianthus , Dianthus/anatomia & histologia , Dianthus/genética , Dianthus/metabolismo , Eugenol , Flores , Fenótipo , Fatores de Transcrição/genética
10.
Basic Res Cardiol ; 117(1): 43, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36038749

RESUMO

Antidepressants have been reported to enhance stroke recovery independent of the presence of depressive symptoms. They have recently been proposed to exert their mood-stabilizing actions by inhibition of acid sphingomyelinase (ASM), which catalyzes the hydrolysis of sphingomyelin to ceramide. Their restorative action post-ischemia/reperfusion (I/R) still had to be defined. Mice subjected to middle cerebral artery occlusion or cerebral microvascular endothelial cells exposed to oxygen-glucose deprivation were treated with vehicle or with the chemically and pharmacologically distinct antidepressants amitriptyline, fluoxetine or desipramine. Brain ASM activity significantly increased post-I/R, in line with elevated ceramide levels in microvessels. ASM inhibition by amitriptyline reduced ceramide levels, and increased microvascular length and branching point density in wildtype, but not sphingomyelinase phosphodiesterase-1 ([Smpd1]-/-) (i.e., ASM-deficient) mice, as assessed by 3D light sheet microscopy. In cell culture, amitriptyline, fluoxetine, and desipramine increased endothelial tube formation, migration, VEGFR2 abundance and VEGF release. This effect was abolished by Smpd1 knockdown. Mechanistically, the promotion of angiogenesis by ASM inhibitors was mediated by small extracellular vesicles (sEVs) released from endothelial cells, which exhibited enhanced uptake in target cells. Proteomic analysis of sEVs revealed that ASM deactivation differentially regulated proteins implicated in protein export, focal adhesion, and extracellular matrix interaction. In vivo, the increased angiogenesis was accompanied by a profound brain remodeling response with increased blood-brain barrier integrity, reduced leukocyte infiltrates and increased neuronal survival. Antidepressive drugs potently boost angiogenesis in an ASM-dependent way. The release of sEVs by ASM inhibitors disclosed an elegant target, via which brain remodeling post-I/R can be amplified.


Assuntos
Amitriptilina , Vesículas Extracelulares , Amitriptilina/metabolismo , Amitriptilina/farmacologia , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Encéfalo/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Desipramina/metabolismo , Desipramina/farmacologia , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Fluoxetina/metabolismo , Fluoxetina/farmacologia , Isquemia/metabolismo , Camundongos , Proteômica
11.
Mikrochim Acta ; 189(12): 457, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36417016

RESUMO

An elaborate composite of molecularly imprinted polymer (MIP)-modified gold nanoparticles (AuNPs)@silica dioxide (SiO2) was designed and prepared for real-time colorimetric determination of glutathione (GSH) in serum. Firstly, the MIPs were synthesized on the surface of SiO2 utilizing GSH as template molecules. Then, AuNPs were synthesized on the surface of MIPs@SiO2 to produce a composite of MIPs modified by AuNPs@SiO2. Compared with plain AuNPs, the composite possessed better peroxidase catalysis activity due to stabilization and protection from hydrophilic SiO2, which can catalyze H2O2 to·OH oxidizing 3,3,5,5-tetramethylbenzidine (TMB) to the colored product. In addition, its selectivity was enhanced by MIP modification with special recognition cavities. With the composite as the sensor, GSH was precisely and sensitively detected in the range 5 ~ 40 µM with a limit of determination of 1.16 µM according to the principle of inhibitive peroxidase catalysis activity by GSH. The proposed colorimetric detection was successfully utilized for selective, convenient, and rapid determination of GSH in serum. It provided a new strategy for drug real-time monitoring and has high potential in clinical drug analysis.


Assuntos
Nanopartículas Metálicas , Impressão Molecular , Ouro , Polímeros Molecularmente Impressos , Técnicas Eletroquímicas , Dióxido de Silício , Peróxido de Hidrogênio , Polímeros , Glutationa , Peroxidases
12.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293423

RESUMO

Dianthus spp. is a genus with high economic and ornamental value in the Caryophyllaceae, which include the famous fresh-cut carnation and the traditional Chinese herbal medicine, D. superbus. Despite the Dianthus species being seen everywhere in our daily lives, its genome information and phylogenetic relationships remain elusive. Thus, we performed the assembly and annotation of chloroplast genomes for 12 individuals from seven Dianthus species. On this basis, we carried out the first comprehensive and systematic analysis of the chloroplast genome sequence characteristics and the phylogenetic evolution of Dianthus. The chloroplast genome of 12 Dianthus individuals ranged from 149,192 bp to 149,800 bp, containing 124 to 126 functional genes. Sequence repetition analysis showed the number of simple sequence repeats (SSRs) ranged from 75 to 80, tandem repeats ranged from 23 to 41, and pair-dispersed repeats ranged from 28 to 43. Next, we calculated the synonymous nucleotide substitution rates (Ks) of all 76 protein coding genes to obtain the evolution rate of these coding genes in Dianthus species; rpl22 showed the highest Ks (0.0471), which suggested that it evolved the swiftest. By reconstructing the phylogenetic relationships within Dianthus and other species of Caryophyllales, 16 Dianthus individuals (12 individuals reported in this study and four individuals downloaded from NCBI) were divided into two strongly supported sister clades (Clade A and Clade B). The Clade A contained five species, namely D. caryophyllus, D. barbatus, D. gratianopolitanus, and two cultivars ('HY' and 'WC'). The Clade B included four species, in which D. superbus was a sister branch with D. chinensis, D. longicalyx, and F1 '87M' (the hybrid offspring F1 from D. chinensis and 'HY'). Further, based on sequence divergence analysis and hypervariable region analysis, we selected several regions that had more divergent sequences, to develop DNA markers. Additionally, we found that one DNA marker can be used to differentiate Clade A and Clade B in Dianthus. Taken together, our results provide useful information for our understanding of Dianthus classification and chloroplast genome evolution.


Assuntos
Dianthus , Medicamentos de Ervas Chinesas , Genoma de Cloroplastos , Humanos , Dianthus/genética , Marcadores Genéticos , Filogenia , Repetições de Microssatélites/genética , Nucleotídeos
13.
Molecules ; 27(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35335171

RESUMO

The search for free-standing 2D materials has been one of the most important subjects in the field of studies on 2D materials and their applications. Recently, a free-standing monolayer of hydrogenated boron (HB) sheet has been synthesized by hydrogenation of borophene. The HB sheet is also called borophane, and its application is actively studied in many aspects. Here, we review recent studies on the electronic structures of polymorphic sheets of borophane. A hydrogenated boron sheet with a hexagonal boron frame was shown to have a semimetallic electronic structure by experimental and theoretical analyses. A tight-binding model that reproduces the electronic structure was given and it allows easy estimation of the properties of the material. Hydrogenated boron sheets with more complicated nonsymmorphic boron frames were also analyzed. Using the symmetry restrictions from the nonsymmorphic symmetry and the filling factor of hydrogenated boron sheets, the existence of a Dirac nodal line was suggested. These studies provide basic insights for research on and device applications of hydrogenated boron sheets.


Assuntos
Boro , Eletrônica , Boro/química , Humanos
14.
Brain Behav Immun ; 94: 458-462, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621620

RESUMO

BACKGROUND: The newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a worldwide pandemic of human respiratory disease. Angiotensin-converting enzyme (ACE) 2 is the key receptor on lung epithelial cells to facilitate initial binding and infection of SARS-CoV-2. The binding to ACE2 is mediated via the spike glycoprotein present on the viral surface. Recent clinical data have demonstrated that patients with previous episodes of brain injuries are a high-risk group for SARS-CoV-2 infection. An explanation for this finding is currently lacking. Sterile tissue injuries including stroke induce the release of several inflammatory mediators that might modulate the expression levels of signaling proteins in distant organs. Whether systemic inflammation following brain injury can specifically modulate ACE2 expression in different vital tissues has not been investigated. METHODS: For the induction of brain stroke, mice were subjected to a surgical procedure for transient interruption of blood flow in the middle cerebral artery for 45 min and sacrificed after 1 and 3 days for analysis of brain, lung, heart, and kidney tissues. Gene expression and protein levels of ACE2, ACE, IL-6 and IL1ß were measured by quantitative PCR and Western blot, respectively. The level of soluble ACE2 in plasma and bronchial alveolar lavage (BAL) was measured using an immunoassay. Immune cell populations in lymphoid organs were analyzed by flow cytometry. Post-stroke pneumonia in mice was examined by bacterial cultures from lung homogenates and whole blood. RESULTS: Strikingly, 1 day after surgery, we observed a substantial increase in the protein levels of ACE2 in the lungs of stroke mice compared to sham-operated mice. However, the protein levels of ACE2 were found unchanged in the heart, kidney, and brain of these animals. In addition, we found increased transcriptional levels of alveolar ACE2 after stroke. The increased expression of ACE2 was significantly associated with the severity of behavioral deficits after stroke. The higher protein levels of alveolar ACE2 persisted until 3 days of stroke. Interestingly, we found reduced levels of soluble ACE2 in plasma but not in BAL in stroke-operated mice compared to sham mice. Furthermore, stroke-induced parenchymal and systemic inflammation was evident with the increased expression of IL-6 and IL-1ß. Reduced numbers of T-lymphocytes were present in the blood and spleen as an indicator of sterile tissue injury-induced immunosuppression. CONCLUSIONS: We demonstrate specific augmented alveolar ACE2 levels and inflammation in murine lungs after experimental stroke. These pre-clinical findings suggest that patients with brain injuries may have increased binding affinity to SARS-CoV-2 in their lungs which might explain why stroke is a risk factor for higher susceptibility to develop COVID-19.


Assuntos
COVID-19 , Acidente Vascular Cerebral , Animais , Humanos , Pulmão , Camundongos , Peptidil Dipeptidase A/genética , SARS-CoV-2
15.
Basic Res Cardiol ; 115(6): 64, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057972

RESUMO

By cleaving sphingomyelin into ceramide, which is an essential component of plasma membrane microdomains, acid sphingomyelinase (Asm) pivotally controls cell signaling. To define how the activation of the Asm/ceramide pathway, which occurs within seconds to minutes upon stress stimuli, influences brain ischemia/reperfusion (I/R) injury, we exposed male and female wildtype mice carrying both alleles of Asm's gene sphingomyelinase phosphodiesterase-1 (Smpd1+/+), heterozygously Asm-deficient mice (Smpd1+/-) and homozygously Asm-deficient mice (Smpd1-/-) of different age (8, 12 or 16 weeks) to 30, 60 or 90 min intraluminal middle cerebral artery occlusion (MCAO). For studying the contribution of brain-invading polymorphonuclear neutrophils (PMN) to I/R injury, PMNs were depleted by delivery of a PMN-specific Ly6G antibody. In male and female mice exposed to 30 min, but not 60 or 90 min MCAO, homozygous Smpd1-/- consistently increased I/R injury, blood-brain barrier permeability and brain leukocyte and PMN infiltration, whereas heterozygous Smpd1+/- reduced I/R injury. Increased abundance of the intercellular leukocyte adhesion molecule ICAM-1 was noted on cerebral microvessels of Smpd1-/- mice. PMN depletion by anti-Ly6G delivery prevented the exacerbation of I/R injury in Smpd1-/- compared with wildtype mice and reduced brain leukocyte infiltrates. Our results show that Asm tempers leukocyte entry into the reperfused ischemic brain, thereby attenuating I/R injury.


Assuntos
Encéfalo/irrigação sanguínea , Infarto da Artéria Cerebral Média/enzimologia , Microvasos/enzimologia , Infiltração de Neutrófilos , Neutrófilos/enzimologia , Traumatismo por Reperfusão/enzimologia , Esfingomielina Fosfodiesterase/deficiência , Animais , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Infarto da Artéria Cerebral Média/genética , Infarto da Artéria Cerebral Média/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/patologia , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle , Esfingomielina Fosfodiesterase/genética , Fatores de Tempo
16.
J Exp Bot ; 71(6): 1915-1927, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31990971

RESUMO

The double flower is a highly important breeding trait that affects the ornamental value in many flowering plants. To get a better understanding of the genetic mechanism of double flower formation in Dianthus chinensis, we have constructed a high-density genetic map using 140 F2 progenies derived from a cross between a single flower genotype and a double flower genotype. The linkage map was constructed using double-digest restriction site-associated DNA sequencing (ddRAD-seq) with 2353 single nucleotide polymorphisms (SNPs). Quantitative trait locus (QTL) mapping analysis was conducted for 12 horticultural traits, and major QTLs were identified for nine of the 12 traits. Among them, two major QTLs accounted for 20.7% and 78.1% of the total petal number variation, respectively. Bulked segregant RNA-seq (BSR-seq) was performed to search accurately for candidate genes associated with the double flower trait. Integrative analysis of QTL mapping and BSR-seq analysis using the reference genome of Dianthus caryophyllus suggested that an SNP mutation in the miR172 cleavage site of the A-class flower organ identity gene APETALA2 (DcAP2L) is responsible for double flower formation in Dianthus through regulating the expression of DcAG genes.


Assuntos
Dianthus , Mapeamento Cromossômico , Dianthus/genética , Flores/genética , Ligação Genética , Fenótipo , Polimorfismo de Nucleotídeo Único
17.
Ecotoxicol Environ Saf ; 200: 110736, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32450438

RESUMO

As an effective neonicotinoid insecticide, imidacloprid (IMI) has been widely used in crop production, but its residue affects normal plant growth. Selenium (Se) is a non-essential mineral nutrient in higher plants, that acts as the active centre of glutathione peroxidase (GSH-Px), which removes harmful peroxides. In this study, we investigated the mechanism by which selenium improves the growth status of IMI-treated garlic plants through analyses of apparent morphology and antioxidant enzyme activity as well as the dynamic changes in nutrients and metabolites in the plants. The results showed that 80 µg/kg Na2SeO3 had a strong effect on alleviating the damage in garlic plants exposed to IMI (1.2 mg/kg) by increasing the absorption of mineral elements to enhance the synthesis of chlorophyll and antioxidant enzymes. A nontarget metabolomics analysis based on gas chromatography-mass spectrometry (GC-MS) indicated that the addition of Na2SeO3 to IMI-treated garlic could reconstruct the plant metabolic distribution by enhancing the nitrogen and indole metabolism, maintaining lower concentrations of secondary metabolites and maintaining the balance of the plant energy metabolism. Our study provides novel insights into the molecular mechanisms by which garlic plants responds to IMI exposure and suggests the use of selenium with IMI-contaminated plants as a solution for the advancement of sustainable agricultural pesticide use.


Assuntos
Alho/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Selenito de Sódio/farmacologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Metabolismo Energético/efeitos dos fármacos , Alho/enzimologia , Alho/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Indóis/metabolismo , Nitrogênio/metabolismo , Metabolismo Secundário/efeitos dos fármacos
18.
Int J Neurosci ; 130(9): 857-864, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31928267

RESUMO

Background and purpose: The optimal treatment for acute ischemic stroke with mild neurologic deficits is unclear. We aimed to compare the efficacy and safety of alteplase versus dual-antiplatelet therapy in acute minor stroke.Methods: We performed a retrospective cohort study of patients with minor ischemic stroke and National Institutes of Health Stroke Scale scores ≤5 presenting within 24 h from last seen normal. Patients were divided into intravenous alteplase or dual-antiplatelet therapy group. The primary outcome was a modified Rankin Scale (mRS) score of 0 or 1 at 90 days. Secondary outcomes included mRS score at 7 days, and composite outcome of vascular events within 90 days. The safety outcome was any intracranial hemorrhage (ICH) according to the ECASS II criteria. Clinical outcomes were compared using a multivariable logistic regression after adjusting for confounding factors. We then performed the propensity score matching as a sensitivity analysis.Results: Two hundred twenty-eight patients met the eligibility criteria were included for analysis between January 2015 and September 2018. In the aspirin-clopidogrel group, 109 patients (91.6%) achieved a favorable functional outcome at 3-month versus 85(78.0%) in the alteplase group (OR 4.463, 95%CI 1.708-11.662, p = .002). The difference of the composite outcome of vascular events were not statistical significance between the two groups (p > .05). Asymptomatic ICH occurred in 0.8% patients who received aspirin-clopidogrel, as compared with 3.7% patients in alteplase group (p = .030).Conclusions: Patients treated with dual-antiplatelet therapy with acute minor ischemic stroke had greater functional outcome at 3 months compared with patients who received alteplase therapy.Classification of evidence: This study provides Class IV evidence that dual-antiplatelet therapy is superior to alteplase for achieving a better functional outcome and does not increase the risk of hemorrhage in acute minor ischemic stroke.


Assuntos
Aspirina/farmacologia , Clopidogrel/farmacologia , Fibrinolíticos/farmacologia , Hemorragias Intracranianas/induzido quimicamente , AVC Isquêmico/tratamento farmacológico , Avaliação de Resultados em Cuidados de Saúde , Inibidores da Agregação Plaquetária/farmacologia , Ativador de Plasminogênio Tecidual/farmacologia , Idoso , Aspirina/efeitos adversos , Clopidogrel/efeitos adversos , Quimioterapia Combinada , Feminino , Fibrinolíticos/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Agregação Plaquetária/efeitos adversos , Estudos Retrospectivos , Índice de Gravidade de Doença , Ativador de Plasminogênio Tecidual/efeitos adversos
19.
Nanotechnology ; 29(4): 045706, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29022882

RESUMO

The rotation transmission system (RTS) made from co-axial multi-walled nanotubes (MWNTs) has the function of regulating the input rotation from a nanomotor. The mechanism for the regulation is that the friction among the tubes during rotation governs the rotation of the rotors in the nanosystem. By integrating a rotary nanomotor and a nanobearing into an MWNT-based RTS, it is discovered that the stator (outer tube) provides relatively greater friction on the rotors by penetrating the motor tube, which has a higher stable rotational frequency. And the output rotation of the rotors in the system depends significantly on the temperature of the system, as the rotor tubes are slightly longer than the motor tube. Briefly, at low temperatures, say 8 K, the rotors rotate synchronously with the motor. However, at high temperatures, the rotors rotate slower than the motor with a bigger difference between their rotational frequencies. Hence, the output rotational frequencies can be adjusted by changing the temperature as well as the input rotational frequency.

20.
Epilepsia ; 58(12): 2172-2177, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29034463

RESUMO

OBJECTIVE: This study aimed to clarify the effect of statins on preventing the risk of postradiation epilepsy. METHODS: We performed a retrospective analysis of neurological nasopharyngeal carcinoma patients with a history of radiotherapy. Patients with a history of epilepsy before radiation and those who received prophylactically antiepileptic treatment were excluded. The demographic and clinical data of these patients were collected through chart review. We used Kaplan-Meier analysis (log-rank test) to examine the effect of statins on epilepsy-free survival. Cox regression analysis was utilized to identify independent predictive variables. RESULTS: Our study included 532 patients (405 males and 127 females) with a mean follow-up of 28.1 months. During follow-up, 471 (88.5%) patients developed radiation-induced brain necrosis (RN). Within a mean latency of 24.1 months, 88 (16.5%) patients experienced epilepsy, of whom 27 (27 of 88, 30.7%) patients suffered from epilepsy before the diagnosis of RN. Thirty-six (36 of 88, 40.9%) cases of epilepsy occurred after RN onset, and in 22 cases (22 of 88, 25.0%) epilepsy was the first presentation of RN. Three patients suffered from epilepsy but did not have RN. Eighty-eight patients in our cohort were treated with statins because of hyperlipidemia or prevention of cardiocerebrovascular diseases, of whom six (6.8%) developed epilepsy, whereas in those without statin, the epileptic rate was 18.5%. Log-rank test found that there was a significant difference in epilepsy-free survival between patients who used statins and those who did not (p = 0.016). After adjusting for confounding variables, multivariate Cox regression analysis revealed that statin use could still significantly reduce the risk of epilepsy after radiation (hazard ratio = 0.36, 95% confidence interval = 0.15-0.82, p = 0.015). However, for the patients who already suffered from RN, statin treatment did not lower the risk of post-RN epilepsy. SIGNIFICANCE: Early statin use may reduce the risk of postradiotherapy epilepsy in patients with nasopharyngeal carcinoma.


Assuntos
Carcinoma/complicações , Carcinoma/radioterapia , Epilepsia/etiologia , Epilepsia/prevenção & controle , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Neoplasias Nasofaríngeas/complicações , Neoplasias Nasofaríngeas/radioterapia , Radioterapia/efeitos adversos , Adulto , Idoso , Intervalo Livre de Doença , Epilepsia/epidemiologia , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Estudos Retrospectivos , Fatores de Risco , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa