Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Plant J ; 117(1): 33-52, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37731059

RESUMO

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Zea mays/genética , Metilação de DNA , Montagem e Desmontagem da Cromatina/genética , Inativação Gênica , Regulação da Expressão Gênica de Plantas
2.
Proc Natl Acad Sci U S A ; 119(22): e2204418119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35617434

RESUMO

Vectorial optical holography represents a solution to control the polarization and amplitude distribution of light in the Fourier space. While vectorial optical holography has been experimentally demonstrated in the linear optical regime, its nonlinear counterpart, which can provide extra degrees of freedom of light-field manipulation through the frequency conversion processes, remains unexplored. Here, we experimentally demonstrate the nonlinear vectorial holography through the second harmonic generation process on a quad-atom plasmonic metasurface. The quad-atom metasurface consists of gold meta-atoms with threefold rotational symmetry. Based on the concept of nonlinear geometric phase, we can simultaneously manipulate the phase and amplitude of the left and right circularly polarized second harmonic waves generated from the quad-atom metasurface. By superposing the two orthogonal polarization components, the quad-atom metasurface can produce nonlinear holographic images with vectorial polarization distributions. The proposed metasurface platform may have important applications in vectorial polarization nonlinear optical source, high-capacity optical information storage, and optical encryption.

3.
Nano Lett ; 24(21): 6369-6375, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38752581

RESUMO

Optical chirality, which plays important roles in liquid crystal display and biological and chemical detection, has been attracting scientists' attention due to its potential applications in optical information processing. Usually, the chiral optical response of natural molecules is very weak. However, the emergence of metasurfaces offers a promising solution to solve this issue. By judiciously designing the geometry of meta-atoms, we have realized strong optical circular dichroism (CD) in both linear and nonlinear optical regimes. However, tuning of the CD with a metasurface remains challenging. Here, we propose the twist-angle-controlled nonlinear CD effect by using the second-harmonic generation process on a gold-crystal hybrid metasurface. The CD effect of the second-harmonic waves can be tuned well by controlling the twist angle between the two constituent materials. The proposed hybrid metasurface may open new avenues for developing ultracompact and multifunctional nonlinear optical devices.

4.
Theor Appl Genet ; 137(5): 109, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649662

RESUMO

KEY MESSAGE: A stable genomic region conferring FSR resistance at ~250 Mb on chromosome 1 was identified by GWAS. Genomic prediction has the potential to improve FSR resistance. Fusarium stalk rot (FSR) is a global destructive disease in maize; the efficiency of phenotypic selection for improving FSR resistance was low. Novel genomic tools of genome-wide association study (GWAS) and genomic prediction (GP) provide an opportunity for genetic dissection and improving FSR resistance. In this study, GWAS and GP analyses were performed on 562 tropical maize inbred lines consisting of two populations. In total, 15 SNPs significantly associated with FSR resistance were identified across two populations and the combinedPOP consisting of all 562 inbred lines, with the P-values ranging from 1.99 × 10-7 to 8.27 × 10-13, and the phenotypic variance explained (PVE) values ranging from 0.94 to 8.30%. The genetic effects of the 15 favorable alleles ranged from -4.29 to -14.21% of the FSR severity. One stable genomic region at ~ 250 Mb on chromosome 1 was detected across all populations, and the PVE values of the SNPs detected in this region ranged from 2.16 to 5.18%. Prediction accuracies of FSR severity estimated with the genome-wide SNPs were moderate and ranged from 0.29 to 0.51. By incorporating genotype-by-environment interaction, prediction accuracies were improved between 0.36 and 0.55 in different breeding scenarios. Considering both the genome coverage and the threshold of the P-value of SNPs to select a subset of molecular markers further improved the prediction accuracies. These findings extend the knowledge of exploiting genomic tools for genetic dissection and improving FSR resistance in tropical maize.


Assuntos
Resistência à Doença , Fusarium , Fenótipo , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Zea mays , Zea mays/genética , Zea mays/microbiologia , Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Melhoramento Vegetal , Genótipo , Genômica/métodos , Estudos de Associação Genética , Alelos , Mapeamento Cromossômico/métodos
5.
J Integr Plant Biol ; 65(12): 2645-2659, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929676

RESUMO

Maize (Zea mays) requires substantial amounts of nitrogen, posing a challenge for its cultivation. Recent work discovered that some ancient Mexican maize landraces harbored diazotrophic bacteria in mucilage secreted by their aerial roots. To see if this trait is retained in modern maize, we conducted a field study of aerial root mucilage (ARM) in 258 inbred lines. We observed that ARM secretion is common in modern maize, but the amount significantly varies, and only a few lines have retained the nitrogen-fixing traits found in ancient landraces. The mucilage of the high-ARM inbred line HN5-724 had high nitrogen-fixing enzyme activity and abundant diazotrophic bacteria. Our genome-wide association study identified 17 candidate genes associated with ARM across three environments. Knockouts of one candidate gene, the subtilase family gene ZmSBT3, confirmed that it negatively regulates ARM secretion. Notably, the ZmSBT3 knockout lines had increased biomass and total nitrogen accumulation under nitrogen-free culture conditions. High ARM was associated with three ZmSBT3 haplotypes that were gradually lost during maize domestication, being retained in only a few modern inbred lines such as HN5-724. In summary, our results identify ZmSBT3 as a potential tool for enhancing ARM, and thus nitrogen fixation, in maize.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Zea mays/genética , Zea mays/microbiologia , Nitrogênio , Polissacarídeos , Bactérias
6.
Theor Appl Genet ; 135(5): 1551-1563, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35181836

RESUMO

KEY MESSAGE: A major QTL of qRtsc8-1 conferring TSC resistance was identified and fine mapped to a 721 kb region on chromosome 8 at 81 Mb, and production markers were validated in breeding lines. Tar spot complex (TSC) is a major foliar disease of maize in many Central and Latin American countries and leads to severe yield loss. To dissect the genetic architecture of TSC resistance, a genome-wide association study (GWAS) panel and a bi-parental doubled haploid population were used for GWAS and selective genotyping analysis, respectively. A total of 115 SNPs in bin 8.03 were detected by GWAS and three QTL in bins 6.05, 6.07, and 8.03 were detected by selective genotyping. The major QTL qRtsc8-1 located in bin 8.03 was detected by both analyses, and it explained 14.97% of the phenotypic variance. To fine map qRtsc8-1, the recombinant-derived progeny test was implemented. Recombinations in each generation were backcrossed, and the backcross progenies were genotyped with Kompetitive Allele Specific PCR (KASP) markers and phenotyped for TSC resistance individually. The significant tests for comparing the TSC resistance between the two classes of progenies with and without resistant alleles were used for fine mapping. In BC5 generation, qRtsc8-1 was fine mapped in an interval of ~ 721 kb flanked by markers of KASP81160138 and KASP81881276. In this interval, the candidate genes GRMZM2G063511 and GRMZM2G073884 were identified, which encode an integral membrane protein-like and a leucine-rich repeat receptor-like protein kinase, respectively. Both genes are involved in maize disease resistance responses. Two production markers KASP81160138 and KASP81160155 were verified in 471 breeding lines. This study provides valuable information for cloning the resistance gene, and it will also facilitate the routine implementation of marker-assisted selection in the breeding pipeline for improving TSC resistance.


Assuntos
Locos de Características Quantitativas , Zea mays , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Zea mays/genética
7.
Plant Dis ; 106(8): 2066-2073, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35259305

RESUMO

Internal fungal contamination in cereal grains may affect plant growth and result in health concerns for humans and animals. Fusarium verticillioides is a seedborne fungus that can systemically infect maize. However, few efforts had been devoted to studying the genetics of maize resistance to seedborne F. verticillioides. In this study, we developed a disease evaluation method to identify resistance to seedborne F. verticillioides in maize, by which a set of 121 diverse maize inbred lines were evaluated. A 160 F10-generation recombinant inbred line (RIL) population derived from a cross of the resistant (BT-1) and susceptible (N6) inbred line was further used to identify major quantitative trait loci (QTLs) for seedborne F. verticillioides resistance. Eighteen inbred lines with a high resistance to seedborne F. verticillioides were characterized and could be used as potential germplasm resources for genetic improvement of maize resistance. Six QTLs with high heritability across multiple environments were detected on chromosomes 3, 4, 6, and 10, among which was a major QTL, qISFR4-1. Located on chromosome 4 at the interval of 12922609-13418025, qISFR4-1 could explain 16.63% of the total phenotypic variance. Distinct expression profiles of eight candidate genes in qISFR4-1 between BT-1 and N6 inbred lines suggested their pivotal regulatory roles in seedborne F. verticillioides resistance. Taken together, these results will improve our understanding of the resistant mechanisms of seedborne F. verticillioides and would provide valuable germplasm resources for disease resistance breeding in maize.


Assuntos
Fusarium , Doenças das Plantas , Locos de Características Quantitativas , Zea mays , Resistência à Doença/genética , Fusarium/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia
8.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682705

RESUMO

The BRI1-EMS suppressor 1 (BES1)/brassinazole-resistant 1(BZR1) transcription factors play crucial roles in plant growth, development, and stress response. However, little is known about the function of maize's BES1/BZR1s. In this study, the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were cloned from maize's inbred line, B73, and they were functionally evaluated by analyzing their expression pattern, subcellular localization, transcriptional activation activity, as well as their heterologous expression in Arabidopsis, respectively. The results of the qRT-PCR showed that the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes were predominantly expressed in the root, and their expression was significantly down-regulated by drought stress. The ZmBES1/BZR1-3 and ZmBES1/BZR1-9 proteins localized in the nucleus but showed no transcriptional activation activity as a monomer. Subsequently, it was found that the heterologous expression of the ZmBES1/BZR1-3 and ZmBES1/BZR1-9 genes in Arabidopsis decreased drought tolerance, respectively. The transgenic lines showed a more serious wilting phenotype, shorter root length, lower fresh weight, and higher relative electrolyte leakage (REL) and malondialdehyde (MDA) content compared to the control under drought stress. The RNA-sequencing data showed that the 70.67% and 93.27% differentially expressed genes (DEGs) were significantly down-regulated in ZmBES1/BZR1-3 and ZmBES1/BZR1-9 transgenic Arabidopsis, respectively. The DEGs of ZmBES1/BZR1-3 gene's expressing lines were mainly associated with oxidative stress response and amino acid metabolic process and enriched in phenylpropanoid biosynthesis and protein processing in the endoplasmic reticulum. But the DEGs of the ZmBES1/BZR1-9 gene's expressing lines were predominantly annotated with water deprivation, extracellular stimuli, and jasmonic acid and enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. Moreover, ZmBES1/BZR1-9 increased stomatal aperture in transgenic Arabidopsis under drought stress. This study indicates that ZmBES1/BZR1-3 and ZmBES1/BZR1-9 negatively regulate drought tolerance via different pathways in transgenic Arabidopsis, and it provides insights into the underlying the function of BES1/BZR1s in crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/metabolismo
9.
BMC Plant Biol ; 21(1): 305, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193036

RESUMO

BACKGROUND: Natural variations derived from both evolutionary selection and genetic recombination, presume to have important functions to respond to various abiotic stresses, which could be used to improve drought tolerance via genomic selection. RESULTS: In the present study, the NAC-encoding gene of ZmNAC080308 was cloned and sequenced in 199 inbred lines in maize. Phylogenetic analysis showed that ZmNAC080308 is closely clusteredinto the same group with other well-known NAC genes responding to improve drought tolerance. In total, 86 SNPs and 47 InDels were identified in the generic region of ZmNAC080308, 19 of these variations were associated with GY (grain yield) in different environments. Nine variations in the 5'-UTR region of ZmNAC080308 are closely linked, they might regulate the gene expression and respond to improve GY under drought condition via Sp1-mediated transactivation. Two haplotypes (Hap1 and Hap2) identified in the, 5'-UTR region using the nine variations, and Hap2 containing insertion variants, exhibited 15.47 % higher GY under drought stress condition. Further, a functional marker was developed to predict the drought stress tolerance in a US maize inbred line panel. Lines carrying Hap2 exhibited > 10 % higher GY than those carrying Hap1 under drought stress condition. In Arabidopsis, overexpression ZmNAC080308 enhanced drought tolerance. CONCLUSIONS: ZmNAC080308 is an important gene responding to drought tolerance, a functional marker is developed for improving maize drought tolerance by selecting this gene.


Assuntos
Secas , Variação Genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/genética , Zea mays/genética , Zea mays/fisiologia , Regiões 5' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Núcleo Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação/genética , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único/genética , Plântula/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Plant Biotechnol J ; 19(2): 261-272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32738177

RESUMO

Hybrid breeding has been shown to effectively increase rice productivity. However, identifying desirable hybrids out of numerous potential combinations is a daunting challenge. Genomic selection holds great promise for accelerating hybrid breeding by enabling early selection before phenotypes are measured. With the recent advances in multi-omic technologies, hybrid prediction based on transcriptomic and metabolomic data has received increasing attention. However, the current omic-based hybrid prediction has ignored parental phenotypic information, which is of fundamental importance in plant breeding. In this study, we integrated parental phenotypic information into various multi-omic prediction models applied in hybrid breeding of rice and compared the predictabilities of 15 combinations from four sets of predictors from the parents, that is genome, transcriptome, metabolome and phenome. The predictability for each combination was evaluated using the best linear unbiased prediction and a modified fast HAT method. We found significant interactions between predictors and traits in predictability, but joint prediction with various combinations of the predictors significantly improved predictability relative to prediction of any single source omic data for each trait investigated. Incorporation of parental phenotypic data into various omic predictors increased the predictability, averagely by 13.6%, 54.5%, 19.9% and 8.3%, for grain yield, number of tillers per plant, number of grains per panicle and 1000 grain weight, respectively. Among nine models of incorporating parental traits, the AD-All model was the most effective one. This novel strategy of incorporating parental phenotypic data into multi-omic prediction is expected to improve hybrid breeding progress, especially with the development of high-throughput phenotyping technologies.


Assuntos
Oryza , Hibridização Genética , Modelos Genéticos , Oryza/genética , Fenótipo , Melhoramento Vegetal
11.
Theor Appl Genet ; 134(1): 279-294, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037897

RESUMO

KEY MESSAGE: Historical data from breeding programs can be efficiently used to improve genomic selection accuracy, especially when the training set is optimized to subset individuals most informative of the target testing set. The current strategy for large-scale implementation of genomic selection (GS) at the International Maize and Wheat Improvement Center (CIMMYT) global maize breeding program has been to train models using information from full-sibs in a "test-half-predict-half approach." Although effective, this approach has limitations, as it requires large full-sib populations and limits the ability to shorten variety testing and breeding cycle times. The primary objective of this study was to identify optimal experimental and training set designs to maximize prediction accuracy of GS in CIMMYT's maize breeding programs. Training set (TS) design strategies were evaluated to determine the most efficient use of phenotypic data collected on relatives for genomic prediction (GP) using datasets containing 849 (DS1) and 1389 (DS2) DH-lines evaluated as testcrosses in 2017 and 2018, respectively. Our results show there is merit in the use of multiple bi-parental populations as TS when selected using algorithms to maximize relatedness between the training and prediction sets. In a breeding program where relevant past breeding information is not readily available, the phenotyping expenditure can be spread across connected bi-parental populations by phenotyping only a small number of lines from each population. This significantly improves prediction accuracy compared to within-population prediction, especially when the TS for within full-sib prediction is small. Finally, we demonstrate that prediction accuracy in either sparse testing or "test-half-predict-half" can further be improved by optimizing which lines are planted for phenotyping and which lines are to be only genotyped for advancement based on GP.


Assuntos
Genoma de Planta , Melhoramento Vegetal , Seleção Genética , Zea mays/genética , Algoritmos , Genética Populacional , Genótipo , Modelos Genéticos , Fenótipo
12.
Theor Appl Genet ; 134(6): 1729-1752, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33594449

RESUMO

KEY MESSAGE: Intensive public sector breeding efforts and public-private partnerships have led to the increase in genetic gains, and deployment of elite climate-resilient maize cultivars for the stress-prone environments in the tropics. Maize (Zea mays L.) plays a critical role in ensuring food and nutritional security, and livelihoods of millions of resource-constrained smallholders. However, maize yields in the tropical rainfed environments are now increasingly vulnerable to various climate-induced stresses, especially drought, heat, waterlogging, salinity, cold, diseases, and insect pests, which often come in combinations to severely impact maize crops. The International Maize and Wheat Improvement Center (CIMMYT), in partnership with several public and private sector institutions, has been intensively engaged over the last four decades in breeding elite tropical maize germplasm with tolerance to key abiotic and biotic stresses, using an extensive managed stress screening network and on-farm testing system. This has led to the successful development and deployment of an array of elite stress-tolerant maize cultivars across sub-Saharan Africa, Asia, and Latin America. Further increasing genetic gains in the tropical maize breeding programs demands judicious integration of doubled haploidy, high-throughput and precise phenotyping, genomics-assisted breeding, breeding data management, and more effective decision support tools. Multi-institutional efforts, especially public-private alliances, are key to ensure that the improved maize varieties effectively reach the climate-vulnerable farming communities in the tropics, including accelerated replacement of old/obsolete varieties.


Assuntos
Mudança Climática , Melhoramento Vegetal , Zea mays/genética , Temperatura Baixa , Produtos Agrícolas/genética , Resistência à Doença , Secas , Inundações , Haploidia , Temperatura Alta , Fenótipo , Estresse Fisiológico , Clima Tropical
13.
Nano Lett ; 20(10): 7463-7468, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32903003

RESUMO

In linear optics, the metasurface represents an ideal platform for encoding optical information because of its unprecedented abilities of manipulating the intensity, polarization, and phase of light wave with subwavelength meta-atoms. However, controlling various degrees of freedom of light in nonlinear optics remains elusive. Here, we propose a nonlinear plasmonic metasurface working in the near-infrared regime that can simultaneously encode optical images in the real and Fourier spaces. This is achieved by designing a diatomic meta-molecule, which enables the independent control of the nonlinear geometric phase, polarization, and intensity of second harmonic waves. The proposed nonlinear diatomic metasurface provides an ultracompact platform for implementing multidimensional optical information encoding and may hold great potential in optical information security and optical anticounterfeiting.

14.
BMC Genomics ; 21(1): 357, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398006

RESUMO

BACKGROUND: Fusarium ear rot (FER) caused by Fusarium verticillioides is a major disease of maize that reduces grain yield and quality globally. However, there have been few reports of major loci for FER were verified and cloned. RESULT: To gain a comprehensive understanding of the genetic basis of natural variation in FER resistance, a recombinant inbred lines (RIL) population and one panel of inbred lines were used to map quantitative trait loci (QTL) for resistance. As a result, a total of 10 QTL were identified by linkage mapping under four environments, which were located on six chromosomes and explained 1.0-7.1% of the phenotypic variation. Epistatic mapping detected four pairs of QTL that showed significant epistasis effects, explaining 2.1-3.0% of the phenotypic variation. Additionally, 18 single nucleotide polymorphisms (SNPs) were identified across the whole genome by genome-wide association study (GWAS) under five environments. Compared linkage and association mapping revealed five common intervals located on chromosomes 3, 4, and 5 associated with FER resistance, four of which were verified in different near-isogenic lines (NILs) populations. GWAS identified three candidate genes in these consistent intervals, which belonged to the Glutaredoxin protein family, actin-depolymerizing factors (ADFs), and AMP-binding proteins. In addition, two verified FER QTL regions were found consistent with Fusarium cob rot (FCR) and Fusarium seed rot (FSR). CONCLUSIONS: These results revealed that multi pathways were involved in FER resistance, which was a complex trait that was controlled by multiple genes with minor effects, and provided important QTL and genes, which could be used in molecular breeding for resistance.


Assuntos
Mapeamento Cromossômico/métodos , Resistência à Doença/genética , Fusarium/patogenicidade , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Zea mays/genética , Fatores de Despolimerização de Actina/genética , Cromossomos de Plantas , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Zea mays/microbiologia
15.
Theor Appl Genet ; 133(10): 2869-2879, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32607592

RESUMO

KEY MESSAGE: Genomic selection with a multiple-year training population dataset could accelerate early-stage testcross testing by skipping the first-stage yield testing, which significantly saves the time and cost of early-stage testcross testing. With the development of doubled haploid (DH) technology, the main task for a maize breeder is to estimate the breeding values of thousands of DH lines annually. In early-stage testcross testing, genomic selection (GS) offers the opportunity of replacing expensive multiple-environment phenotyping and phenotypic selection with lower-cost genotyping and genomic estimated breeding value (GEBV)-based selection. In the present study, a total of 1528 maize DH lines, phenotyped in multiple-environment trials in three consecutive years and genotyped with a low-cost per-sample genotyping platform of rAmpSeq, were used to explore how to implement GS to accelerate early-stage testcross testing. Results showed that the average prediction accuracy estimated from the cross-validation schemes was above 0.60 across all the scenarios. The average prediction accuracies estimated from the independent validation schemes ranged from 0.23 to 0.32 across all the scenarios, when the one-year datasets were used as training population (TRN) to predict the other year data as testing population (TST). The average prediction accuracies increased to a range from 0.31 to 0.42 across all the scenarios, when the two-years datasets were used as TRN. The prediction accuracies increased to a range from 0.50 to 0.56, when the TRN consisted of two-years of breeding data and 50% of third year's data converted from TST to TRN. This information showed that GS with a multiple-year TRN set offers the opportunity to accelerate early-stage testcross testing by skipping the first-stage yield testing, which significantly saves the time and cost of early-stage testcross testing.


Assuntos
Genoma de Planta , Haploidia , Melhoramento Vegetal , Seleção Genética , Zea mays/genética , Cruzamentos Genéticos , Genótipo , Modelos Genéticos , Fenótipo
16.
Theor Appl Genet ; 132(4): 1049-1059, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30535634

RESUMO

KEY MESSAGE: We lay the foundation for further research on maize resistance to Fusarium verticillioides cob rot by identifying a candidate resistance gene. Fusarium verticillioides ear rot is the most common type of maize ear rot in the Huanghuaihai Plain of China. Ear rot resistance includes cob and kernel resistance. Most of the current literature concentrates on kernel resistance, and genetic studies on cob resistance are scarce. We aimed on identifying the QTLs responsible for F. verticillioides cob rot (FCR) resistance. Twenty-eight genes associated with 48 single nucleotide polymorphisms (SNPs) were identified (P < 10-4) to correlate with FCR resistance using a whole-genome association study. The major quantitative trait locus, qRcfv2, for FCR resistance was identified on chromosome 2 through linkage mapping and was validated in near-isogenic line populations. Two candidate genes associated with two SNPs were detected in the qRcfv2 region with a lower threshold (P < 10-3). Through real-time fluorescence quantitative PCR, one candidate gene was found to have no expression in the cob but the other was expressed in response to F. verticillioides. These results lay a foundation for research on the resistance mechanisms of cob and provide resources for marker-assisted selection.


Assuntos
Resistência à Doença/genética , Fusarium/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Mapeamento Físico do Cromossomo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Reprodutibilidade dos Testes
17.
Nucleic Acids Res ; 45(9): 5126-5141, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28175341

RESUMO

Natural antisense transcripts (NATs) are a prominent and complex class of regulatory RNAs. Using strand-specific RNA sequencing, we identified 1769 sense and antisense transcript pairs (NAT pairs) in two maize inbreds with different sensitivity to drought, as well as in two derivative recombination inbred lines (RILs). A significantly higher proportion of NATs relative to non-NATs are specifically expressed under water stress (WS). Surprisingly, expression of sense and antisense transcripts produced by NAT pairs is significantly correlated, particularly under WS. We found an unexpected large proportion of NATs with protein coding potential, as estimated by ribosome release scores. Small RNAs significantly accumulate within NAT pairs, with 21 nt smRNA particularly enriched in overlapping regions of these pairs of genes. The abundance of these smRNAs is significantly altered in the leafbladeless1 mutant, suggesting that these genes may be regulated by the tasiRNA pathway. Further, NATs are significantly hypomethylated and include fewer transposable element sequences relative to non-NAT genes. NAT gene regions also exhibit higher levels of H3K36me3, H3K9ac, and H3K4me3, but lower levels of H3K27me3, indicating that NAT gene pairs generally exhibit an open chromatin configuration. Finally, NAT pairs in 368 diverse maize inbreds and 19 segregating populations were specifically enriched for polymorphisms associated with drought tolerance. Taken together, the data highlight the potential impact of that small RNAs and histone modifications have in regulation of NAT expression, and the significance of NATs in response to WS.


Assuntos
Aclimatação/genética , RNA Antissenso , RNA de Plantas , Zea mays/genética , Cromatina/metabolismo , Metilação de DNA , Elementos de DNA Transponíveis , DNA de Plantas/metabolismo , Secas , Histonas/metabolismo , RNA Antissenso/biossíntese , RNA de Plantas/biossíntese , Estresse Fisiológico
18.
J Exp Bot ; 68(11): 2641-2666, 2017 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-28830098

RESUMO

As one of the important concepts in conventional quantitative genetics and breeding, genetic gain can be defined as the amount of increase in performance that is achieved annually through artificial selection. To develop pro ducts that meet the increasing demand of mankind, especially for food and feed, in addition to various industrial uses, breeders are challenged to enhance the potential of genetic gain continuously, at ever higher rates, while they close the gaps that remain between the yield potential in breeders' demonstration trials and the actual yield in farmers' fields. Factors affecting genetic gain include genetic variation available in breeding materials, heritability for traits of interest, selection intensity, and the time required to complete a breeding cycle. Genetic gain can be improved through enhancing the potential and closing the gaps, which has been evolving and complemented with modern breeding techniques and platforms, mainly driven by molecular and genomic tools, combined with improved agronomic practice. Several key strategies are reviewed in this article. Favorable genetic variation can be unlocked and created through molecular and genomic approaches including mutation, gene mapping and discovery, and transgene and genome editing. Estimation of heritability can be improved by refining field experiments through well-controlled and precisely assayed environmental factors or envirotyping, particularly for understanding and controlling spatial heterogeneity at the field level. Selection intensity can be significantly heightened through improvements in the scale and precision of genotyping and phenotyping. The breeding cycle time can be shortened by accelerating breeding procedures through integrated breeding approaches such as marker-assisted selection and doubled haploid development. All the strategies can be integrated with other widely used conventional approaches in breeding programs to enhance genetic gain. More transdisciplinary approaches, team breeding, will be required to address the challenge of maintaining a plentiful and safe food supply for future generations. New opportunities for enhancing genetic gain, a high efficiency breeding pipeline, and broad-sense genetic gain are also discussed prospectively.


Assuntos
Produtos Agrícolas/genética , Biologia Molecular/métodos , Melhoramento Vegetal/métodos , Variação Genética
19.
Theor Appl Genet ; 129(4): 753-765, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26849239

RESUMO

KEY MESSAGE: Molecular characterization information on genetic diversity, population structure and genetic relationships provided by this research will help maize breeders to better understand how to utilize the current CML collection. CIMMYT maize inbred lines (CMLs) have been widely used all over the world and have contributed greatly to both tropical and temperate maize improvement. Genetic diversity and population structure of the current CML collection and of six temperate inbred lines were assessed and relationships among all lines were determined with genotyping-by-sequencing SNPs. Results indicated that: (1) wider genetic distance and low kinship coefficients among most pairs of lines reflected the uniqueness of most lines in the current CML collection; (2) the population structure and genetic divergence between the Temperate subgroup and Tropical subgroups were clear; three major environmental adaptation groups (Lowland Tropical, Subtropical/Mid-altitude and Highland Tropical subgroups) were clearly present in the current CML collection; (3) the genetic diversity of the three Tropical subgroups was similar and greater than that of the Temperate subgroup; the average genetic distance between the Temperate and Tropical subgroups was greater than among Tropical subgroups; and (4) heterotic patterns in each environmental adaptation group estimated using GBS SNPs were only partially consistent with patterns estimated based on combining ability tests and pedigree information. Combining current heterotic information based on combining ability tests and the genetic relationships inferred from molecular marker analyses may be the best strategy to define heterotic groups for future tropical maize improvement. Information resulting from this research will help breeders to better understand how to utilize all the CMLs to select parental lines, replace testers, assign heterotic groups and create a core set of breeding germplasm.


Assuntos
Genótipo , Vigor Híbrido , Polimorfismo de Nucleotídeo Único , Zea mays/genética , DNA de Plantas/genética , Frequência do Gene , Endogamia , Melhoramento Vegetal , Análise de Sequência de DNA
20.
Sci Adv ; 10(8): eadk3882, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38381825

RESUMO

Optical switching has important applications in optical information processing, optical computing, and optical communications. The long-term pursuit of optical switch is to achieve short switching time and large modulation depth. Among various mechanisms, all-optical switching based on Kerr effect represents a promising solution. However, it is usually difficult to compromise both switching time and modulation depth of a Kerr-type optical switch. To circumvent this constraint, symmetry selective polarization switching via second-harmonic generation (SHG) in nonlinear crystals has been attracting scientists' attention. Here, we demonstrate SHG-based all-optical ultrafast polarization switching by using geometric phase controlled nonlinear plasmonic metasurfaces. A switching time of hundreds of femtoseconds and a modulation depth of 97% were experimentally demonstrated. The function of dual-channel all-optical switching was also demonstrated on a metasurface, which consists of spatially variant meta-atoms. The nonlinear metasurface proposed here represents an important platform for developing all-optical ultrafast switches and would benefit the area of optical information processing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa