Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 257
Filtrar
1.
Mol Ther ; 32(6): 2000-2020, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659226

RESUMO

Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared with the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with upregulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ dendritic cells and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provides insights into the relevant cellular processes following oncolytic virotherapy.


Assuntos
Adenoviridae , Ascite , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Ascite/terapia , Ascite/etiologia , Feminino , Masculino , Pessoa de Meia-Idade , Adenoviridae/genética , Idoso , Análise de Célula Única , Linfócitos T CD8-Positivos/imunologia , Adulto , Resultado do Tratamento , Estudos Longitudinais , Replicação Viral
2.
Environ Sci Technol ; 58(23): 10368-10377, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814143

RESUMO

The insect Tenebrio molitor exhibits ultrafast efficiency in biodegrading polystyrene (PS). However, the generation and fate of nanoplastics (NPs) in the intestine during plastic biodegradation remain unknown. In this study, we investigated the biodegradation of PS microplastics (MPs) mediated by T. molitor larvae over a 4-week period and confirmed biodegradation by analyzing Δδ13C in the PS before and after biotreatment (-28.37‰ versus -24.88‰) as an effective tool. The ·OH radicals, primarily contributed by gut microbiota, and H2O2, primarily produced by the host, both increased after MP digestion. The size distribution of residual MP particles in excrements fluctuated within the micrometer ranges. PS NPs were detected in the intestine but not in the excrements. At the end of Weeks 1, 2, 3, and 4, the concentrations of PS NPs in gut tissues were 3.778, 2.505, 2.087, and 2.853 ng/lava, respectively, while PS NPs in glands were quantified at 0.636, 0.284, and 0.113 ng/lava and eventually fell below the detection limit. The PS NPs in glands remained below the detection limit at the end of Weeks 5 and 6. This indicates that initially, NPs generated in the gut entered glands, then declined gradually and eventually disappeared or possibly biodegraded after Week 4, associated with the elevated plastic-degrading capacities of T. molitor larvae. Our findings unveil rapid synergistic MP biodegradation by the larval host and gut microbiota, as well as the fate of generated NPs, providing new insights into the risks and fate associated with NPs during invertebrate-mediated plastic biodegradation.


Assuntos
Biodegradação Ambiental , Larva , Microplásticos , Poliestirenos , Tenebrio , Animais , Microplásticos/metabolismo , Tenebrio/metabolismo , Larva/metabolismo , Plásticos/metabolismo , Microbioma Gastrointestinal
3.
Environ Sci Technol ; 58(18): 7826-7837, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653213

RESUMO

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.


Assuntos
Biomassa , Micro-Ondas , Pirólise , Proteínas/química , Lipídeos/química , Carvão Vegetal/química , Carboidratos/química , Biocombustíveis
4.
Environ Sci Technol ; 58(27): 11887-11900, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38885123

RESUMO

The detrimental effects of plastics on aquatic organisms, including those of macroplastics, microplastics, and nanoplastics, have been well established. However, knowledge on the interaction between plastics and terrestrial insects is limited. To develop effective strategies for mitigating the impact of plastic pollution on terrestrial ecosystems, it is necessary to understand the toxicity effects and influencing factors of plastic ingestion by insects. An overview of current knowledge regarding plastic ingestion by terrestrial insects is provided in this Review, and the factors influencing this interaction are identified. The pathways through which insects interact with plastics, which can lead to plastic accumulation and microplastic transfer to higher trophic levels, are also discussed using an overview and a conceptual model. The diverse impacts of plastic exposure on insects are discussed, and the challenges in existing studies, such as a limited focus on certain plastic types, are identified. Further research on standardized methods for sampling and analysis is crucial for reliable research, and long-term monitoring is essential to assess plastic trends and ecological impacts in terrestrial ecosystems. The mechanisms underlying these effects need to be uncovered, and their potential long-term consequences for insect populations and ecosystems require evaluation.


Assuntos
Insetos , Microplásticos , Animais , Microplásticos/toxicidade , Insetos/efeitos dos fármacos , Plásticos/toxicidade , Ecossistema , Monitoramento Ambiental
5.
Environ Sci Technol ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989650

RESUMO

Anaerobic digestion (AD) is commonly used in food waste treatment. Prokaryotic microbial communities in AD of food waste have been comprehensively studied. The role of viruses, known to affect microbial dynamics and metabolism, remains largely unexplored. This study employed metagenomic analysis and recovered 967 high-quality viral bins within food waste and digestate derived from 8 full-scale biogas plants. The diversity of viral communities was higher in digestate. In silico predictions linked 20.8% of viruses to microbial host populations, highlighting possible virus predators of key functional microbes. Lineage-specific virus-host ratio varied, indicating that viral infection dynamics might differentially affect microbial responses to the varying process parameters. Evidence for virus-mediated gene transfer was identified, emphasizing the potential role of viruses in controlling the microbiome. AD altered the specific process parameters, potentially promoting a shift in viral lifestyle from lysogenic to lytic. Viruses encoding auxiliary metabolic genes (AMGs) were involved in microbial carbon and nutrient cycling, and most AMGs were transcriptionally expressed in digestate, meaning that viruses with active functional states were likely actively involved in AD. These findings provided a comprehensive profile of viral and bacterial communities and expanded knowledge of the interactions between viruses and hosts in food waste and digestate.

6.
Appl Opt ; 63(2): 415-422, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38227237

RESUMO

This study explores the utilization of a liquid crystal lens with a shiftable axis for true-color and super-resolution imaging. By maintaining the optical power and shifting the axis of the liquid crystal lens, precise sub-pixel level shifts are applied to the images formed on the sensor, enabling the construction of true-color and super-resolution images. A comparative analysis with the traditional interpolation-based demosaicing method reveals that true-color imaging not only enhances clarity and effective pixel count, but also significantly reduces occurrences of false color, edge aliasing, and color moiré artifacts.

7.
J Environ Sci (China) ; 146: 140-148, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969442

RESUMO

Sulfonamide antibiotics (SAs) widely used have potentially negative effects on human beings and ecosystems. Adsorption and advanced oxidation methods have been extensively applied in SAs wastewater treatment. In this study, compared with Al3+@BC500 and Fe3+@BC500, La3+@BC500 for activating persulfate (S2O82-) had the best effect removal performance of sulfadiazine (SDZ) and sulfamethoxazole (SMX). Morphology, acidity, oxygen-containing functional groups, and loading of La3+@BC500 were analyzed by techniques, including EA, BET, XRD, XPS, FT-IR. XRD results show that with the increase of La3+ loading, the surface characteristics of biochar gradually changed from CaCO3 to LaCO3OH. Through EPR technology, it is proved that LaCO3OH on the surface of La3+@BC500 can not only activate S2O82- to generate SO4-•, but also to produce •OH. In the optimization experiment, the optimal dosage of La3+ is between 0.05 and 0.2 (mol/L)/g. SDZ had a good removal effect at pH (5-9), but SMX had a good removal effect only at pH=3. Zeta potential also proves that the material is more stable under acidic conditions. The removal process of SDZ is more in accord with pseudo-first-order kinetics (R2=0.9869), while SMX is more in line with pseudo-second order kinetics (R2=0.9926).


Assuntos
Antibacterianos , Lantânio , Sulfonamidas , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Antibacterianos/química , Sulfonamidas/química , Lantânio/química , Carvão Vegetal/química , Adsorção , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Águas Residuárias/química
8.
Small ; 19(33): e2300253, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093194

RESUMO

Due to substantial consumption and widespread contamination of the available freshwater resources, green, economical, and sustainable water recycling technologies are urgently needed. Recently, Faradic capacitive deionization (CDI), an emerging desalination technology, has shown great desalination potential due to its high salt removal ability, low consumption, and hardly any co-ion exclusion effect. However, the ion removal mechanisms and structure-property relationships of Faradic CDI are still unclear. Therefore, it is necessary to summarize the current research progress and challenges of Faradic CDI. In this review, the recent progress of Faradic CDI from five aspects is systematically reviewed: cell architectures, desalination mechanisms, evaluation indicators, operation modes, and electrode materials. The working mechanisms of Faradic CDI are classified as insertion reaction, conversion reaction, ion-redox species interaction, and ion-redox couple interaction in the electrolytes. The intrinsic and desalination properties of a series of Na+ and Cl- capturing materials are described in detail in terms of design concepts, structural analysis, and synthesis modulation. In addition, the effects of different cell architectures, operation modes, and electrode materials on the desalination performance of Faradic CDI are also investigated. Finally, the work summarizes the challenges remaining in Faradic CDI and provides the prospects and directions for future development.

9.
Environ Sci Technol ; 57(47): 18940-18949, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37207368

RESUMO

Peracetic acid (PAA) is an emerging alternative disinfectant for saline waters; HOBr or HOCl is known as the sole species contributing to halogenation reactions during PAA oxidation and disinfection. However, new results herein strongly indicated that the brominating agents (e.g., BrCl, Br2, BrOCl, and Br2O) are generated at concentrations typically lower than HOCl and HOBr but played significant roles in micropollutants transformation. The presence of Cl- and Br- at environmentally relevant levels could greatly accelerate the micropollutants (e.g., 17α-ethinylestraiol (EE2)) transformation by PAA. The kinetic model and quantum chemical calculations collectively indicated that the reactivities of bromine species toward EE2 follow the order of BrCl > Br2 > BrOCl > Br2O > HOBr. In saline waters with elevated Cl- and Br- levels, these overlooked brominating agents influence bromination rates of more nucleophilic constituents of natural organic matter and increase the total organic bromine. Overall, this work refines our knowledge regarding the species-specific reactivity of brominating agents and highlights the critical roles of these agents in micropollutant abatement and disinfection byproduct formation during PAA oxidation and disinfection.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Bromo , Ácido Peracético , Águas Residuárias , Bromatos , Desinfecção/métodos , Purificação da Água/métodos
10.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751481

RESUMO

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Assuntos
Poliestirenos , Tenebrio , Animais , Polietileno , Tenebrio/metabolismo , Plásticos , Larva/metabolismo , Biodegradação Ambiental , Microplásticos
11.
Environ Res ; 220: 115162, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580982

RESUMO

A clear understanding of algal cell adhesion and cake layer evolution in algal-related membrane processes (ARMPs) is urgently required to mitigate the membrane fouling. In this study, the effect of microparticles (10 µm-30 µm), subvisible particles (0.45 µm-10 µm), and ultrafine particles (50 kDa-0.45 µm) on the membrane fouling were explored based on the filtration performance through Hermia models, thermodynamic analysis, and simulation of extended discrete element method (EDEM). The results illustrated that microparticles played an important role in algal cell aggregation and the formation of initial clusters. Intermediate blocking fouling occurred when filtrating the subvisible particle, which facilitated internal adhesion and enhanced biofilm formation. In addition, the interfacial attractive force for the initial algal adhesion was obviously increased when the membrane surfaces were in high concentration of protein and polysaccharide. Moreover, the EDEM simulation demonstrated that subsequent particles, particularly the particles with small sizes, preferred to occupy the spaces among the previously deposited particles. This study provided new insights into the contributions of size-fractioned particles to initial fouling and their influence on the successive adhesion of other contaminants.


Assuntos
Incrustação Biológica , Purificação da Água , Adesão Celular , Filtração/métodos , Termodinâmica , Sementes
12.
J Environ Manage ; 341: 118076, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148767

RESUMO

Biochar is considered a good activator for use in advanced oxidation technology. However, dissolved solids (DS) released from biochar cause unstable activation efficiency. Biochar prepared from saccharification residue of barley straw (BC-SR) had less DS than that prepared directly from barley straw (BC-O). Moreover, BC-SR had a higher C content, degree of aromatization, and electrical conductivity than BC-O. Although the effects of BC-O and BC-SR on activation of Persulfate (PS) to remove phenol were similar, the activation effect of DS from BC-O was 73% higher than that of DS from BC-SR. Moreover, the activation effect of DS was shown to originate from its functional groups. Importantly, BC-SR had higher activation stability than BC-O owing to the stable graphitized carbon structure of BC-SR. Identification of reactive oxygen species showed that SO4•-, •OH, and 1O2 were all effective in degradation by BC-SR/PS and BC-O/PS systems, but their relative contributions differed. Furthermore, BC-SR as an activator showed high anti-interference ability in the complex groundwater matrix, indicating it has practical application value. Overall, this study provides novel insight that can facilitate the design and optimization of a green, economical, stable, and efficient biochar-activated PS for groundwater organic pollution remediation.


Assuntos
Fenol , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Sulfatos/química , Fenóis/análise , Carvão Vegetal/química , Oxirredução
13.
J Environ Manage ; 345: 118818, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37633102

RESUMO

It is widely understood that microplastics (MPs) can induce various biological stresses in macroinvertebrates that are incapable of biodegrading plastics. However, the biodegradation and physiological responses of plastic-degrading macroinvertebrates toward MPs of different degradability levels remain unexplored. In this study, Tenebrio molitor larvae (mealworms) were selected as a model of plastics-degrading macroinvertebrate, and were tested against three common plastics of different degradability rankings: polyvinyl chloride (PVC), polystyrene (PS), and polylactic acid (PLA) MPs (size <300 µm). These three MPs were biodegraded with the rate sequence of PLA > PS > PVC, resulting in a reversed order of negative physiological responses (body weight loss, decreased survival, and biomass depletion) of mealworms. Simultaneously, the levels of reactive oxygen species (ROS), antioxidant enzyme activities, and lipid peroxidation were uniformly increased as polymer degradability decreased and intermediate toxicity increased. PVC MPs exhibited higher toxicity than the other two polymers. The oxidative stresses were effectively alleviated by supplementing co-diet bran. The T. molitor larvae fed with PLA plus bran showed sustainable growth without an increase in oxidative stress. The results provide new insights into the biotoxicity of MPs on macroinvertebrates and offer comprehensive information on the physiological stress responses of plastic-degrading macroinvertebrates during the biodegradation of plastics with different degradability levels.


Assuntos
Poliestirenos , Tenebrio , Animais , Poliestirenos/toxicidade , Larva/metabolismo , Tenebrio/metabolismo , Plásticos , Microplásticos/toxicidade , Microplásticos/metabolismo , Cloreto de Polivinila , Poliésteres/metabolismo , Antioxidantes/metabolismo
14.
J Environ Manage ; 344: 118691, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536239

RESUMO

Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.


Assuntos
Metais Pesados , Fósforo , Fósforo/análise , Esgotos/química , Fertilizantes , Incineração , Europa (Continente) , Metais Pesados/química
15.
Appl Environ Microbiol ; 88(16): e0104222, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35938788

RESUMO

A large amount of long-chain fatty acids (LCFA) are generated after lipids hydrolysis in anaerobic digestion (AD), and LCFA are difficult to be biodegraded. This study showed that hydrochar (HC), which was produced during the hydrothermal liquefaction of organic wastes, significantly increased the methane production rate (by 56.9%) of oleate, a typical refractory model LCFA. Genomic-centric metatranscriptomics analysis revealed that three novel microbes (Bin138 Spirochaetota sp., Bin35 Smithellaceae sp., and Bin54 Desulfomonilia sp.) that were capable of degrading LCFA were enriched by HC, which played an important role in the degradation of oleate. LCFA was degraded to acetate through the well-known LCFA ß-oxidation pathway and the combined ß-oxidation and butyrate oxidation pathway. In addition, it was found that HC promoted the direct interspecies electron transfer (DIET) between Methanothrix sp. and Bin54 Desulfomonilia sp. The enriched new types of LCFA-degrading bacteria and the promotion of DIET contributed to the improved methane production rate of oleate by HC. IMPORTANCE Long-chain fatty acids (LCFA) are difficult to be degraded in anaerobic digestion (AD), and the known LCFA degrading bacteria are only limited to the families Syntrophomonadaceae and Syntrophaceae. Here, we found that hydrochar effectively promoted AD of LCFA, and the new LCFA-degrading bacteria and a new metabolic pathway were also revealed based on genomic-centric metatranscriptomic analysis. This study provided a new method for enhancing the AD of organic wastes with high content of LCFA and increased the understanding of the microbes and their metabolic pathways involved in AD of LCFA.


Assuntos
Reatores Biológicos , Metano , Anaerobiose , Bactérias/genética , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Ácidos Graxos/metabolismo , Humanos , Metano/metabolismo , Ácido Oleico/metabolismo
16.
Environ Sci Technol ; 56(23): 17310-17320, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350780

RESUMO

Biodegradation of polystyrene (PS) in mealworms (Tenebrio molitor lavae) has been identified with commercial PS foams. However, there is currently limited understanding of the influence of molecular weight (MW) on insect-mediated plastic biodegradation and the corresponding responses of mealworms. In this study, we provided the results of PS biodegradation, gut microbiome, and metabolome by feeding mealworms with high-purity PS microplastics with a wide variety of MW. Over 24 days, mealworms (50 individuals) fed with 0.20 g of PS showed decreasing removal of 74.1 ± 1.7, 64.1 ± 1.6, 64.4 ± 4.0, 73.5 ± 0.9, 60.6 ± 2.6, and 39.7 ± 4.3% for PS polymers with respective weight-average molecular weights (Mw) of 6.70, 29.17, 88.63, 192.9, 612.2, and 1346 kDa. The mealworms degraded most PS polymers via broad depolymerization but ultrahigh-MW PS via limited-extent depolymerization. The gut microbiome was strongly associated with biodegradation, but that with low- and medium-MW PS was significantly distinct from that with ultrahigh-MW PS. Metabolomic analysis indicated that PS biodegradation reprogrammed the metabolome and caused intestinal dysbiosis depending on MW. Our findings demonstrate that mealworms alter their gut microbiome and intestinal metabolic pathways in response to in vivo biodegradation of PS polymers of various MWs.


Assuntos
Microbioma Gastrointestinal , Tenebrio , Humanos , Animais , Tenebrio/metabolismo , Poliestirenos , Plásticos , Microbioma Gastrointestinal/fisiologia , Peso Molecular , Polímeros , Larva/metabolismo , Metaboloma
17.
Environ Sci Technol ; 56(2): 1300-1309, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34965096

RESUMO

Peracetic acid (PAA) is an emerging oxidant and disinfectant for wastewater (WW) treatment due to limited harmful disinfection byproduct (DBP) formation. Nitrite (NO2-) is a ubiquitous anion in water, but the impact of NO2- on PAA oxidation and disinfection has been largely overlooked. This work found for the first time that NO2- could significantly promote the oxidation of sulfonamide antibiotics (SAs) by PAA. Unexpectedly, the reactive nitrogen species (RNS), for example, peroxynitrite (ONOO-), rather than conventional organic radicals (R-O•) or reactive oxygen species (ROS), played major roles in SAs degradation. A kinetic model based on first-principles was developed to elucidate the reaction mechanism and simulate reaction kinetics of the PAA/NO2- process. Structural activity assessment and quantum chemical calculations showed that RNS tended to react with an aromatic amine group, resulting in more conversion of NO2--N to organic-N. The formation of nitrated and nitrosated byproducts and the enhancement of trichloronitromethane formation potential might be a prevalent problem in the PAA/NO2- process. This study provides new insights into the reaction of PAA with NO2- and sheds light on the potential risks of PAA in WW treatment in the presence of NO2-.


Assuntos
Ácido Peracético , Purificação da Água , Antibacterianos , Desinfecção , Nitritos , Espécies Reativas de Nitrogênio , Sulfonamidas , Purificação da Água/métodos
18.
Environ Res ; 209: 112860, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35123965

RESUMO

As the global economy develops and the population increases, greenhouse gas emissions and wastewater discharge have become inevitable global problems. Conventional wastewater treatment processes produce direct or indirect greenhouse gas, which can intensify global warming. Microalgae-based wastewater treatment technology can not only purify wastewater and use the nutrients in wastewater to produce microalgae biomass, but it can also absorb CO2 in the atmosphere or flue gas through photosynthesis, which demonstrates great potential as a sustainable and economical wastewater treatment technology. This review highlights the multifaceted roles of microalgae in different types of wastewater treatment processes in terms of the extent of their bioremediation function and microalgae biomass production. In addition, various newly developed microalgae cultivation systems, especially biofilm cultivation systems, were further characterized systematically. The performance of different microalgae cultivation systems was studied and summarized. Current research on the technical approaches for the modification of the CO2 capture by microalgae and the maximization of CO2 transfer and conversion efficiency were also reviewed. This review serves as a useful and informative reference for the application of wastewater treatment and CO2 capture by microalgae, aiming to provide a reference for the realization of carbon neutrality in wastewater treatment systems.


Assuntos
Microalgas , Biomassa , Carbono , Dióxido de Carbono , Águas Residuárias/análise
19.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234920

RESUMO

Advanced oxidation processes (AOPs) demonstrate great micropollutant degradation efficiency. In this study, CuFe2O4 was successfully used to activate peracetic acid (PAA) to remove Rhodamine B. Acetyl(per)oxyl radicals were the dominant species in this novel system. The addition of 2,4-hexadiene (2,4-HD) and Methanol (MeOH) significantly inhibited the degradation efficiency of Rhodamine B. The ≡Cu2+/≡Cu+ redox cycle dominated PAA activation, thereby producing organic radicals (R-O˙) including CH3C(O)O˙ and CH3C(O)OO˙, which accounted for the degradation of Rhodamine B. Increasing either the concentration of CuFe2O4 (0-100 mg/L) or PAA (10-100 mg/L) promoted the removal efficiency of this potent system. In addition, weakly acid to weakly alkali pH conditions (6-8) were suitable for pollutant removal. The addition of Humid acid (HA), HCO3-, and a small amount of Cl- (10-100 mmol·L-1) slightly inhibited the degradation of Rhodamine B. However, degradation was accelerated by the inclusion of high concentrations (200 mmol·L-1) of Cl-. After four iterations of catalyst recycling, the degradation efficiency remained stable and no additional functional group characteristic peaks were observed. Taking into consideration the reaction conditions, interfering substances, system stability, and pollutant-removal efficiency, the CuFe2O4/PAA system demonstrated great potential for the degradation of Rhodamine B.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Álcalis , Peróxido de Hidrogênio , Metanol , Oxirredução , Rodaminas
20.
Cancer Cell Int ; 21(1): 262, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985527

RESUMO

It has been intensively reported that the immunosuppressive tumor microenvironment (TME) results in tumor resistance to immunotherapy, especially immune checkpoint blockade and chimeric T cell antigen therapy. As an emerging therapeutic agent, oncolytic viruses (OVs) can specifically kill malignant cells and modify immune and non-immune TME components through their intrinsic properties or genetically incorporated with TME regulators. Strategies of manipulating OVs against the immunosuppressive TME include serving as a cancer vaccine, expressing proinflammatory factors and immune checkpoint inhibitors, and regulating nonimmune stromal constituents. In this review, we summarized the mechanisms and applications of OVs against the immunosuppressive TME, and strategies of OVs in combination with immunotherapy. We also introduced future directions to achieve efficient clinical translation including optimization of preclinical models that simulate the human TME and achieving systemic delivery of OVs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa