Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Gastroenterology ; 164(7): 1137-1151.e15, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36871599

RESUMO

BACKGROUND & AIMS: Fibrosis and tissue stiffening are hallmarks of inflammatory bowel disease (IBD). We have hypothesized that the increased stiffness directly contributes to the dysregulation of the epithelial cell homeostasis in IBD. Here, we aim to determine the impact of tissue stiffening on the fate and function of the intestinal stem cells (ISCs). METHODS: We developed a long-term culture system consisting of 2.5-dimensional intestinal organoids grown on a hydrogel matrix with tunable stiffness. Single-cell RNA sequencing provided stiffness-regulated transcriptional signatures of the ISCs and their differentiated progeny. YAP-knockout and YAP-overexpression mice were used to manipulate YAP expression. In addition, we analyzed colon samples from murine colitis models and human IBD samples to assess the impact of stiffness on ISCs in vivo. RESULTS: We demonstrated that increasing the stiffness potently reduced the population of LGR5+ ISCs and KI-67+-proliferating cells. Conversely, cells expressing the stem cell marker, olfactomedin-4, became dominant in the crypt-like compartments and pervaded the villus-like regions. Concomitantly, stiffening prompted the ISCs to preferentially differentiate toward goblet cells. Mechanistically, stiffening increased the expression of cytosolic YAP, driving the extension of olfactomedin-4+ cells into the villus-like regions, while it induced the nuclear translocation of YAP, leading to preferential differentiation of ISCs toward goblet cells. Furthermore, analysis of colon samples from murine colitis models and patients with IBD demonstrated cellular and molecular remodeling reminiscent of those observed in vitro. CONCLUSIONS: Collectively, our findings highlight that matrix stiffness potently regulates the stemness of ISCs and their differentiation trajectory, supporting the hypothesis that fibrosis-induced gut stiffening plays a direct role in epithelial remodeling in IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Camundongos , Animais , Células Caliciformes , Células-Tronco/fisiologia , Mucosa Intestinal/metabolismo , Diferenciação Celular/genética , Doenças Inflamatórias Intestinais/metabolismo , Colite/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5922-5929, 2021 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-34951183

RESUMO

This study intended to explore the effect and mechanism of total flavonoids of Drynariae Rhizoma in improving scopola-mine-induced learning and memory impairments in model mice. Ninety four-month-old Kunming(KM) mice were randomly divided into six groups. The ones in the model group and blank group were treated with intragastric administration of normal saline, while those in the medication groups separately received the total flavonoids of Drynariae Rhizoma, Kangnaoshuai Capsules, donepezil, as well as total flavonoids of Rhizoma Drynariae plus estrogen receptor(ER) blocker by gavage. The mouse model of learning and memory impairments was established via intraperitoneal injection of scopolamine. Following the measurement of mouse learning and memory abilities in Morris water maze test, the hippocampal ERß expression was detected by immunohistochemistry, and the expression levels of ERß and phosphorylated p38(p-p38) in the hippocampus and B-cell lymphoma 2(Bcl-2), Bcl-2-associated death promoter(Bad), and cysteinyl aspartate-specific protease-3(caspase-3) in the apoptotic system were assayed by Western blot. The contents of malondia-ldehyde(MDA), superoxide dismutase(SOD), and nitric oxide(NO) in the hippocampus were then determined using corresponding kits. Compared with the control group, the model group exhibited significantly prolonged incubation period, reduced frequency of cros-sing the platform, shortened residence time in the target quadrant, lowered ERß, Bcl-2 and SOD activity in the hippocampus, and increased p-p38/p38, Bad, caspase-3, MDA, and NO. Compared with the model group, the total flavonoids of Rhizoma Drynariae increased the expression of ERß and SOD in the hippocampus, down-regulated the expression of neuronal pro-apoptotic proteins, up-re-gulated the expression of anti-apoptotic proteins, and reduced p-p38/p38, MDA, and NO. The effects of total flavonoids of Drynariae Rhizoma on the above indexes were reversed by ER blocker. It has been proved that the total flavonoids of Drynariae Rhizoma obviously alleviate scopolamine-induced learning and memory impairments in mice, which may be achieved by regulating the neuronal apoptotic system and oxidative stress via the ER-p38 mitogen-activated protein kinase(ER-p38 MAPK) signaling pathway.


Assuntos
Polypodiaceae , Animais , Flavonoides , Hipocampo , Aprendizagem em Labirinto , Camundongos , Receptores de Estrogênio , Escopolamina/toxicidade , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/genética
3.
J Biomech Eng ; 141(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30917195

RESUMO

Arterial stiffening is a hallmark of aging, but how aging affects the arterial response to pressure is still not completely understood, especially with regard to specific matrix metalloproteinases (MMPs). Here, we performed biaxial inflation-extension tests on C57BL/6 mice to study the effects of age and MMP12, a major arterial elastase, on arterial biomechanics. Aging from 2 to 24 months leads to both circumferential and axial stiffening with stretch, and these changes are associated with an increased wall thickness, a decreased inner radius-wall thickness ratio, and a decreased in vivo axial stretch. Analysis of in vivo stretch and stress-stretch curves with arteries from age- and sex-matched wild-type (WT) and MMP12-null arteries demonstrates that MMP12 deletion attenuates age-dependent arterial stiffening, mostly in the axial direction. MMP12 deletion also prevents the aging-associated decrease in the in vivo stretch and, in general, leads to an axial mechanics phenotype characteristic of much younger mice. Circumferential arterial mechanics were much less affected by deletion of MMP12. We conclude that the induction of MMP12 during aging preferentially promotes axial arterial stiffening.

4.
J Biomech Eng ; 140(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305611

RESUMO

Elastin is a peculiar elastomer in that it requires water to maintain resilience, and its mechanical properties are closely associated with the immediate aqueous environment. The bulk, extra- and intrafibrillar water plays important roles in both elastic and viscoelastic properties of elastin. In this study, a two-stage liquid-vapor method was developed to investigate the effects of water loss on the mechanical properties of porcine aortic elastin. The tissue samples started in a phosphate-buffered saline (PBS) solution at their fully hydrated condition, with a gravimetric water content of 370±36%. The hydration level was reduced by enclosing the tissue in dialysis tubing and submerging it in polyethylene glycol (PEG) solution at concentrations of 10%, 20%, 30%, and 45% w/v, which reduced the water content of the samples to 258±34%, 224±20%, 109±9%, and 58±3%, respectively. The samples were then transferred to a humidity chamber to maintain the hydration level while the samples underwent equi-biaxial tensile and stress relaxation tests. The concentration of 10% PEG treatment induced insignificant changes in tissue dimensions and stiffness, indicating that the removal of bulk water has less effect on elastin. Significant increases in tangent modulus were observed after 20% and 30% PEG treatment due to the decreased presence of extrafibrillar water. Elastin treated with 45% PEG shows a very rigid behavior as most of the extrafibrillar water is eliminated. These results suggest that extrafibrillar water is crucial for elastin to maintain its elastic behavior. It was also observed that the anisotropy of elastin tends to decrease with water loss. An increase in stress relaxation was observed for elastin treated with 30% PEG, indicating a more viscous behavior of elastin when the amount of extrafibrillar water is significantly reduced. Results from this study shed light on the close association between the bulk, extra- and intrafibrillar water pools and the mechanics of elastin.


Assuntos
Aorta Torácica/metabolismo , Elastina/metabolismo , Fenômenos Mecânicos , Água/metabolismo , Animais , Fenômenos Biomecânicos , Teste de Materiais , Suínos
5.
Artigo em Inglês | MEDLINE | ID: mdl-28989186

RESUMO

Elastin, the principle protein component of the elastic fiber, is a critical extracellular matrix (ECM) component of the arterial wall providing structural resilience and biological signaling essential in vascular morphogenesis and maintenance of mechanical homeostasis. Pathogenesis of many cardiovascular diseases have been associated with alterations of elastin. As a long-lived ECM protein that is deposited and organized before adulthood, elastic fibers can suffer from cumulative effects of biochemical exposure encountered during aging and/or disease, which greatly compromise their mechanical function. This review article covers findings from recent studies of the mechanical and structural contribution of elastin to vascular function, and the effects of biochemical degradation. Results from diverse experimental methods including tissue-level mechanical characterization, fiber-level nonlinear optical imaging, piezoelectric force microscopy, and nuclear magnetic resonance are reviewed. The intriguing coupled bio-chemo-electro-mechanical behavior of elastin calls for a multi-scale and multi-physical understanding of ECM mechanics and mechanobiology in vascular remodeling.

6.
J Biomech Eng ; 139(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28303272

RESUMO

Elastin and collagen fibers are the major load-bearing extracellular matrix (ECM) constituents of the vascular wall. Arteries function differently than veins in the circulatory system; however as a result from several treatment options, veins are subjected to sudden elevated arterial pressure. It is thus important to recognize the fundamental structure and function differences between a vein and an artery. Our research compared the relationship between biaxial mechanical function and ECM structure of porcine thoracic aorta and inferior vena cava. Our study suggests that aorta contains slightly more elastin than collagen due to the cyclical extensibility, but vena cava contains almost four times more collagen than elastin to maintain integrity. Furthermore, multiphoton imaging of vena cava showed longitudinally oriented elastin and circumferentially oriented collagen that is recruited at supraphysiologic stress, but low levels of strain. However in aorta, elastin is distributed uniformly, and the primarily circumferentially oriented collagen is recruited at higher levels of strain than vena cava. These structural observations support the functional finding that vena cava is highly anisotropic with the longitude being more compliant and the circumference stiffening substantially at low levels of strain. Overall, our research demonstrates that fiber distributions and recruitment should be considered in addition to relative collagen and elastin contents. Also, the importance of accounting for the structural and functional differences between arteries and veins should be taken into account when considering disease treatment options.


Assuntos
Aorta/citologia , Aorta/fisiologia , Veias Cavas/citologia , Veias Cavas/fisiologia , Animais , Anisotropia , Aorta/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Imagem Molecular , Dinâmica não Linear , Suínos , Veias Cavas/metabolismo , Suporte de Carga
7.
Proc Natl Acad Sci U S A ; 111(27): E2780-6, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958890

RESUMO

Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present compelling evidence that elastin, the key ECM protein found in connective tissues, is ferroelectric, and we elucidate the molecular mechanism of its switching. Nanoscale piezoresponse force microscopy and macroscopic pyroelectric measurements both show that elastin retains ferroelectricity at 473 K, with polarization on the order of 1 µC/cm(2), whereas coarse-grained molecular dynamics simulations predict similar polarization with a Curie temperature of 580 K, which is higher than most synthetic molecular ferroelectrics. The polarization of elastin is found to be intrinsic in tropoelastin at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics, and it switches via thermally activated cooperative rotation of dipoles. Our study sheds light onto a long-standing question on ferroelectric switching in biology and establishes ferroelectricity as an important biophysical property of proteins. This is a critical first step toward resolving its physiological significance and pathological implications.


Assuntos
Elastina/química , Eletricidade , Animais , Elastina/fisiologia , Microscopia Eletrônica de Transmissão , Simulação de Dinâmica Molecular , Suínos , Termogravimetria
8.
Biophys J ; 110(3): 530-533, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26806883

RESUMO

Second-harmonic generation (SHG) originates from the interaction between upconverted fields from individual scatterers. This renders SHG microscopy highly sensitive to molecular distribution. Here, we aim to take advantage of the difference in SHG between aligned and partially aligned molecules to probe the degree of molecular order during biomechanical testing, independently of the absolute orientation of the scattering molecules. Toward this goal, we implemented a circular polarization SHG imaging approach and used it to quantify the intensity change associated with collagen fibers straightening in the arterial wall during mechanical stretching. We were able to observe the delayed alignment of collagen fibers during mechanical loading, thus demonstrating a simple method to characterize molecular distribution using intensity information alone.


Assuntos
Colágenos Fibrilares/ultraestrutura , Animais , Artérias/ultraestrutura , Colágenos Fibrilares/metabolismo , Humanos , Estresse Mecânico
9.
Biophys J ; 108(7): 1758-1772, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25863067

RESUMO

Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force due to peptide-glucose interactions of the VPGVG motif, which may play an important role in the observed stiffening in glucose-treated elastin.


Assuntos
Elastina/química , Glucose/farmacologia , Motivos de Aminoácidos , Animais , Aorta/química , Elasticidade , Elastina/metabolismo , Glucose/química , Simulação de Dinâmica Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Suínos , Viscosidade
10.
J Biomech Eng ; 137(5): 051001, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25612301

RESUMO

As major extracellular matrix components, elastin, and collagen play crucial roles in regulating the mechanical properties of the aortic wall and, thus, the normal cardiovascular function. The mechanical properties of aorta, known to vary with age and multitude of diseases as well as the proximity to the heart, have been attributed to the variations in the content and architecture of wall constituents. This study is focused on the role of layer-specific collagen undulation in the variation of mechanical properties along the porcine descending thoracic aorta. Planar biaxial tensile tests are performed to characterize the hyperelastic anisotropic mechanical behavior of tissues dissected from four locations along the thoracic aorta. Multiphoton microscopy is used to image the associated regional microstructure. Exponential-based and recruitment-based constitutive models are used to account for the observed mechanical behavior while considering the aortic wall as a composite of two layers with independent properties. An elevated stiffness is observed in distal regions compared to proximal regions of thoracic aorta, consistent with sharper and earlier collagen recruitment estimated for medial and adventitial layers in the models. Multiphoton images further support our prediction that higher stiffness in distal regions is associated with less undulation in collagen fibers. Recruitment-based models further reveal that regardless of the location, collagen in the media is recruited from the onset of stretching, whereas adventitial collagen starts to engage with a delay. A parameter sensitivity analysis is performed to discriminate between the models in terms of the confidence in the estimated model parameters.


Assuntos
Aorta Torácica/metabolismo , Colágeno/metabolismo , Fenômenos Mecânicos , Suínos , Animais , Fenômenos Biomecânicos , Elastina/metabolismo
11.
Biophys J ; 106(12): 2684-92, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24940786

RESUMO

The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.


Assuntos
Artérias/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Matriz Extracelular/metabolismo , Animais , Fenômenos Biomecânicos , Análise de Fourier , Fractais , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Sus scrofa
12.
Sci Rep ; 14(1): 495, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177257

RESUMO

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) excised from 3-month, 8-month, and 8-month denervated rats were subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.


Assuntos
Hipertensão , Animais , Ratos , Fenômenos Biomecânicos , Rim , Artérias Carótidas , Colágeno , Denervação/métodos , Pressão Sanguínea/fisiologia , Simpatectomia/métodos , Resultado do Tratamento
13.
Sci Total Environ ; 946: 174222, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38945230

RESUMO

The presence of antibiotic resistance genes (ARGs), disinfectant resistance genes (DRGs), and pathogens in animal food processing environments (FAPE) poses a significant risk to human health. However, knowledge of the contamination and risk profiles of a typical commercial pig slaughterhouse with periodic disinfectant applications is limited. By creating the overall metagenomics-based behavior and risk profiles of ARGs, DRGs, and microbiomes in a nine-section pig slaughterhouse, an important FAPE in China. A total of 454 ARGs and 84 DRGs were detected in the slaughterhouse with resistance genes for aminoglycosides and quaternary ammonium compounds, respectively. The entire slaughtering chain is a hotspot for pathogens, including 83 human pathogenic bacteria (HPB), with 47 core HPB. In addition, 68 high-risk ARGs were significantly correlated with 55 HPB, 30 of which were recognized as potential bacteria co-resistant to antibiotics and disinfectants, confirm a three-fold risk of ARGs, DRGs, and pathogens prevailing throughout the chain. Pre-slaughter pig house (PSPH) was the major risk source for ARGs, DRGs, and HPB. Moreover, 75 Escherichia coli and 47 Proteus mirabilis isolates showed sensitivity to potassium monopersulfate and sodium hypochlorite, suggesting that slaughterhouses should use such related disinfectants. By using whole genome multi-locus sequence typing and single nucleotide polymorphism analyses, genetically closely related bacteria were identified across distinct slaughter sections, suggesting bacterial transmission across the slaughter chain. Overall, this study underscores the critical role of the PSPH section as a major source of HPB, ARGs, and DRGs contamination in commercial pig slaughterhouses. Moreover, it highlights the importance of addressing clonal transmission and cross-contamination of antibiotic- and disinfectant-resistant bacteria within and between slaughter sections. These issues are primarily attributed to the microbial load carried by animals before slaughter, carcass handling, and content exposure during visceral treatment. Our findings provide valuable insights for One Health-oriented slaughterhouse management practices.


Assuntos
Matadouros , Antibacterianos , Desinfetantes , Animais , Suínos , China , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Resistência Microbiana a Medicamentos/genética , Bactérias/efeitos dos fármacos
14.
Phys Rev Lett ; 110(16): 168101, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23679639

RESUMO

Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is largely suppressed by glucose treatment, which appears to freeze the internal asymmetric polar structures of elastin, making it much harder to switch, or suppressing the switching completely. Such loss of ferroelectricity could have important physiological and pathological implications from aging to arteriosclerosis that are closely related to glycation of elastin.


Assuntos
Aorta/química , Aorta/fisiologia , Elastina/química , Elastina/fisiologia , Glucose/química , Glucose/farmacologia , Animais , Aorta/efeitos dos fármacos , Fenômenos Eletromagnéticos , Microscopia de Força Atômica/métodos , Suínos
15.
Phys Chem Chem Phys ; 15(48): 20786-96, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24018952

RESUMO

In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.


Assuntos
Compostos de Bário/química , Biologia , Eletrônica , Nanopartículas de Magnetita/química , Titânio/química
16.
J Biomech Eng ; 135(5): 54501, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24231962

RESUMO

The macroscopic viscoelastic behavior of collagen gel was studied through relaxation time distribution spectrum obtained from stress relaxation tests and viscoelastic constitutive modeling. Biaxial stress relaxation tests were performed to characterize the viscoelastic behavior of collagen gel crosslinked with Genipin solution. Relaxation time distribution spectrum was obtained from the stress relaxation data by inverse Laplace transform. Peaks at the short (0.3 s-1 s), medium (3 s-90 s), and long relaxation time (>200 s) were observed in the continuous spectrum, which likely correspond to relaxation mechanisms involve fiber, inter-fibril, and fibril sliding. The intensity of the long-term peaks increases with higher initial stress levels indicating the engagement of collagen fibrils at higher levels of tissue strain. We have shown that the stress relaxation behavior can be well simulated using a viscoelastic model with viscous material parameters obtained directly from the relaxation time spectrum. Results from the current study suggest that the relaxation time distribution spectrum is useful in connecting the macro-level viscoelastic behavior of collagen matrices with micro-level structure changes.


Assuntos
Colágeno Tipo I/química , Elasticidade , Análise de Elementos Finitos , Géis , Iridoides/química , Estresse Mecânico , Viscosidade
17.
J R Soc Interface ; 20(201): 20220837, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042193

RESUMO

Understanding how the homeostatic stress state can be reached in arterial tissues can provide new insights into vascular physiology. Even though the function of maintaining homeostasis is often linked to the concentric layers of medial elastic lamellae, how the lamellae are capable of evenly distributing the stress transmurally remains to be understood. The recent microstructural study by Yu et al. (2018 J. R. Soc. Interface 15, 20180492) revealed that, circumferentially, lamellar layers closer to the lumen are wavier than the ones further away from it and, thus, experience more unfolding when subjected to blood pressure. Motivated by this peculiar finding, the current study, for the first time, proposes a novel approach to model elastic lamellae and such structural heterogeneity using the extensible worm-like chain model. When implemented into the material description of the conventional two-layer artery model, in which adventitial collagen is modelled using the inextensible worm-like chain model, it is demonstrated that structural heterogeneity in elastic lamellae plays an important role in dictating transmural stress distribution and, therefore, the homeostasis of the arterial wall.


Assuntos
Artérias , Colágeno , Artérias/fisiologia , Pressão Sanguínea/fisiologia , Elasticidade
18.
Ann Biomed Eng ; 51(10): 2204-2215, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37284997

RESUMO

Ligamentum nuchae is a highly elastic tissue commonly used to study the structure and mechanics of elastin. This study combines imaging, mechanical testing, and constitutive modeling to examine the structural organization of elastic and collagen fibers and their contributions to the nonlinear stress-strain behavior of the tissue. Rectangular samples of bovine ligamentum nuchae cut in both longitudinal and transverse directions were tested in uniaxial tension. Purified elastin samples were also obtained and tested. It was observed that the stress-stretch response of purified elastin tissue follows a similar curve as the intact tissue initially, but the intact tissue shows a significant stiffening behavior for stretches above 1.29 with collagen engagement. Multiphoton and histology images confirm the elastin-dominated bulk of ligamentum nuchae interspersed with small bundles of collagen fibrils and sporadic collagen-rich regions with cellular components and ground substance. A transversely isotropic constitutive model that considers the longitudinal organization of elastic and collagen fibers was developed to describe the mechanical behavior of both intact and purified elastin tissue under uniaxial tension. These findings shed light on the unique structural and mechanical roles of elastic and collagen fibers in tissue mechanics and may aid in future use of ligamentum nuchae in tissue grafting.


Assuntos
Colágeno , Elastina , Animais , Bovinos , Fenômenos Biomecânicos , Colágeno/química , Matriz Extracelular , Ligamentos Articulares , Estresse Mecânico
19.
J Mech Behav Biomed Mater ; 140: 105705, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36758423

RESUMO

Collagen crosslinking, an important contributor to the stiffness of soft tissues, was found to increase with aging in the aortic wall. Here we investigated the mechanical properties of human descending thoracic aorta with aging and the role of collagen crosslinking through a combined experimental and modeling approach. A total of 32 samples from 17 donors were collected and divided into three age groups: <40, 40-60 and > 60 years. Planar biaxial tensile tests were performed to characterize the anisotropic mechanical behavior of the aortic samples. A recently developed constitutive model incorporating collagen crosslinking into the two-fiber family model (Holzapfel and Ogden, 2020) was modified to accommodate biaxial deformation of the aorta, in which the extension and rotation kinematics of bonded fibers and crosslinks were decoupled. The mechanical testing results show that the aorta stiffens with aging with a more drastic change in the longitudinal direction, which results in altered aortic anisotropy. Our results demonstrate a good fitting capability of the constitutive model considering crosslinking for the biaxial aortic mechanics of all age groups. Furthermore, constitutive modeling results suggest an increased contribution of crosslinking and strain energy density to the biaxial stress-stretch behaviors with aging and point to excessive crosslinking as a prominent contributor to aortic stiffening.


Assuntos
Aorta Torácica , Fenômenos Biomecânicos , Colágeno , Modelos Biológicos , Envelhecimento , Aorta Torácica/anatomia & histologia , Aorta Torácica/fisiologia , Colágeno/metabolismo , Humanos , Adulto , Pessoa de Meia-Idade , Resistência à Tração , Idoso , Idoso de 80 Anos ou mais , Estresse Mecânico , Masculino , Feminino
20.
Res Sq ; 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37720022

RESUMO

The prevalence of hypertension increases with aging and is associated with increased arterial stiffness. Resistant hypertension is presented when drug treatments fail to regulate a sustained increased blood pressure. Given that the mechanisms between the sympathetic nervous system and the kidney play an important role in blood regulation, renal denervation (RDN) has emerged as a therapeutic potential in resistant hypertension. In this study, we investigated the effects of RDN on the biomechanical response and microstructure of elastic arteries. Common carotid arteries (CCA) were excised from 3-, 8- and 8-month-old denervated rats, and subjected to biaxial extension-inflation test. Our results showed that hypertension developed in the 8-month-old rats. The sustained elevated blood pressure resulted in arterial remodeling which was manifested as a significant stress increase in both axial and circumferential directions after 8 months. RDN had a favorable impact on CCAs with a restoration of stresses in values similar to control arteries at 3 months. After biomechanical testing, arteries were imaged under a multi-photon microscope to identify microstructural changes in extracellular matrix (ECM). Quantification of multi-photon images showed no significant alterations of the main ECM components, elastic and collagen fibers, indicating that arteries remained intact after RDN. Regardless of the experimental group, our microstructural analysis of the multi-photon images revealed that reorientation of the collagen fibers might be the main microstructural mechanism taking place during pressurization with their straightening happening during axial stretching.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa