Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(9): 3838-3856, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39047149

RESUMO

Crossovers create genetic diversity and are required for equal chromosome segregation during meiosis. Crossover number and distribution are highly regulated by different mechanisms that are not yet fully understood, including crossover interference. The chromosome axis is crucial for crossover formation. Here, we explore the function of the axis protein ASYNAPSIS3. To this end, we use the allotetraploid species Brassica napus; due to its polyploid nature, this system allows a fine-grained dissection of the dosage of meiotic regulators. The simultaneous mutation of all 4 ASY3 alleles results in defective synapsis and drastic reduction of crossovers, which is largely rescued by the presence of only one functional ASY3 allele. Crucially, while the number of class I crossovers in mutants with 2 functional ASY3 alleles is comparable to that in wild type, this number is significantly increased in mutants with only one functional ASY3 allele, indicating that reducing ASY3 dosage increases crossover formation. Moreover, the class I crossovers on each bivalent in mutants with 1 functional ASY3 allele follow a random distribution, indicating compromised crossover interference. These results reveal the distinct dosage-dependent effects of ASY3 on crossover formation and provide insights into the role of the chromosome axis in patterning recombination.


Assuntos
Brassica napus , Troca Genética , Meiose , Proteínas de Plantas , Brassica napus/genética , Meiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Mutação/genética , Cromossomos de Plantas/genética , Pareamento Cromossômico/genética , Segregação de Cromossomos/genética
2.
J Am Chem Soc ; 145(22): 12206-12213, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37227965

RESUMO

Iron (Fe)-based bimetallic oxides/hydroxides have been widely investigated for promising alkaline electrochemical oxygen evolution reactions (OERs), but it still remains argumentative whether Fe3+ or Fe4+ intermediates are highly active for efficient OER. Here, we rationally designed and prepared one Fe, V-based bimetallic composite nanosheet by employing the OER-inert V element as a promoter to completely avoid the argument of real active metals and using our recently developed one-dimensional conductive nickel phosphide (NP) as a support. The as-obtained hierarchical nanocomposite (denoted as FeVOx/NP) was evaluated as a model catalyst to gain insight into the iron-based species as highly active OER sites by performing in situ X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy measurements. It was found that the high-valent Fe4+ species can only be detected during the OER process of the FeVOx/NP nanocomposite instead of the iron counterpart itself. Together with the fact that the OER activities of both the vanadium and iron counterparts are by far worse than that of the FeVOx/NP composite, we can confirm that the high-valent Fe4+ formed are the highly active species for efficient OER. As demonstrated by density functional theory simulations, the composite of Fe and V metals is proposed to cause a decreased Gibbs free energy as well as theoretical overpotential of water oxidation with respect to its counterparts, as is responsible for its excellent OER performance with extremely low OER overpotential (290 mV at 500 mA cm-2) and extraordinary stability (1000 h at 100 mA cm-2).

3.
Adv Mater ; 36(11): e2305437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109742

RESUMO

Hetero-interface engineering has been widely employed to develop supported multicomponent catalysts for water electrolysis, but it still remains a substantial challenge for supported single atom alloys. Herein a conductive oxide MoO2 supported Ir1 Ni single atom alloys (Ir1 Ni@MoO2 SAAs) bifunctional electrocatalysts through surface segregation coupled with galvanic replacement reaction, where the Ir atoms are atomically anchored onto the surface of Ni nanoclusters via the Ir-Ni coordination accompanied with electron transfer from Ni to Ir is reported. Benefiting from the unique structure, the Ir1 Ni@MoO2 SAAs not only exhibit low overpotential of 48.6 mV at 10 mA cm-2 and Tafel slope of 19 mV dec-1 for hydrogen evolution reaction, but also show highly efficient alkaline water oxidation with overpotential of 280 mV at 10 mA cm-2 . Their overall water electrolysis exhibits a low cell voltage of 1.52 V at 10 mA cm-2 and excellent durability. Experiments and theoretical calculations reveal that the Ir-Ni interface effectively weakens hydrogen binding energy, and decoration of the Ir single atoms boost surface reconstruction of Ni species to enhance the coverage of intermediates (OH*) and switch the potential-determining step. It is suggested that this approach opens up a promising avenue to design efficient and durable precious metal bifunctional electrocatalysts.

4.
J Genet Genomics ; 49(8): 810-822, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562093

RESUMO

Plants under pathogen attack produce high levels of the gaseous phytohormone ethylene to induce plant defense responses via the ethylene signaling pathway. The 1-aminocyclopropane-1-carboxylate synthase (ACS) is a critical rate-limiting enzyme of ethylene biosynthesis. Transcriptional and post-translational upregulation of ACS2 and ACS6 by the mitogen-activated protein kinases MPK3 and MPK6 are previously shown to be crucial for pathogen-induced ethylene biosynthesis in Arabidopsis. Here, we report that the fungal pathogen Botrytis cinerea-induced ethylene biosynthesis in Arabidopsis is under the negative feedback regulation by ethylene signaling pathway. The ethylene response factor ERF1A is further found to act downstream of ethylene signaling to negatively regulate the B. cinerea-induced ethylene biosynthesis via indirectly suppressing the expression of ACS2 and ACS6. Interestingly, ERF1A is shown to also upregulate defensin genes directly and therefore promote Arabidopsis resistance to B. cinerea. Furthermore, ERF1A is identified to be a substrate of MPK3 and MPK6, which phosphoactivate ERF1A to enhance its functions in suppressing ethylene biosynthesis and inducing defensin gene expression. Taken together, our data reveal that ERF1A and its phosphorylation by MPK3/MPK6 not only mediate the negative-feedback regulation of the B. cinerea-induced ethylene biosynthesis, but also upregulate defensin gene expression to increase Arabidopsis resistance to B. cinerea.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Defensinas , Etilenos , Retroalimentação , Regulação da Expressão Gênica de Plantas , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Fosforilação
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa