Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Angew Chem Int Ed Engl ; 63(4): e202316710, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38061992

RESUMO

Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with narrow emission spectra have garnered significant attention in future organic light-emitting diode (OLED) displays. However, current C=O/N-embedded MR-TADF systems still lack satisfactory performance in terms of electroluminescence bandwidths and external quantum efficiencies (EQEs). In this study, a C=O/N-embedded green MR-TADF emitter, featuring two acridone units incorporated in a sterically protected 11-ring fused core skeleton, is successfully synthesized through finely controlling the reaction selectivity. The superior combination of multiple intramolecular fusion and steric wrapping strategies in the design of the emitter not only imparts an extremely narrow emission spectrum and a high fluorescence quantum yield to the emitter but also mitigates aggregation-induced spectral broadening and fluorescence quenching. Therefore, the emitter exhibits leading green OLED performance among C=O/N-based MR-TADF systems, achieving an EQE of up to 37.2 %, a full width at half maximum of merely 0.11 eV (24 nm), and a Commission Internationale de l'Éclairage coordinate of (0.20, 0.73). This study marks a significant advance in the realization of ideal C=O/N-based MR-TADF emitters and holds profound implications for the design and synthesis of other MR-TADF systems.

2.
Angew Chem Int Ed Engl ; 63(7): e202318742, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153344

RESUMO

Recently, boron (B)/nitrogen (N)-embedded polycyclic aromatic hydrocarbons (PAHs), characterized by multiple resonances (MR), have attracted significant attention owing to their remarkable features of efficient narrowband emissions with small full width at half maxima (FWHMs). However, developing ultra-narrowband pure-green emitters that comply with the Broadcast Service Television 2020 (BT2020) standard remains challenging. Precise regulation of the MR distribution regions allows simultaneously achieving the emission maximum, FWHM value, and spectral shape that satisfy the BT2020 standard. The proof-of-concept molecule TPABO-DICz exhibited ultrapure green emission with a dominant peak at 515 nm, an extremely small FWHM of 17 nm, and Commission Internationale de l'Eclairage (CIE) coordinates of (0.17, 0.76). The corresponding bottom-emitting organic light-emitting diode (OLED) exhibited a remarkably high CIEy value (0.74) and maximum external quantum efficiency (25.8 %). Notably, the top-emitting OLED achieved nearly BT2020 green color (CIE: 0.14, 0.79) and exhibited a state-of-the-art maximum current efficiency of 226.4 cd A-1 , thus fully confirming the effectiveness of the above strategy.

3.
Artigo em Inglês | MEDLINE | ID: mdl-36693772

RESUMO

BACKGROUND: Cavernous transformation of the portal vein (CTPV) due to portal vein obstruction is a rare vascular anomaly defined as the formation of multiple collateral vessels in the hepatic hilum. This study aimed to investigate the imaging features of intrahepatic portal vein in adult patients with CTPV and establish the relationship between the manifestations of intrahepatic portal vein and the progression of CTPV. METHODS: We retrospectively analyzed 14 CTPV patients in Beijing Tsinghua Changgung Hospital. All patients underwent both direct portal venography (DPV) and computed tomography angiography (CTA) to reveal the manifestations of the portal venous system. The vessels measured included the left portal vein (LPV), right portal vein (RPV), main portal vein (MPV) and the portal vein bifurcation (PVB). RESULTS: Nine males and 5 females, with a median age of 40.5 years, were included in the study. No significant difference was found in the diameters of the LPV or RPV measured by DPV and CTA. The visualization in terms of LPV, RPV and PVB measured by DPV was higher than that by CTA. There was a significant association between LPV/RPV and PVB/MPV in term of visibility revealed with DPV (P = 0.01), while this association was not observed with CTA. According to the imaging features of the portal vein measured by DPV, CTPV was classified into three categories to facilitate the diagnosis and treatment. CONCLUSIONS: DPV was more accurate than CTA for revealing the course of the intrahepatic portal vein in patients with CTPV. The classification of CTPV, that originated from the imaging features of the portal vein revealed by DPV, may provide a new perspective for the diagnosis and treatment of CTPV.

4.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959741

RESUMO

Ginsenoside Rg5, a relatively uncommon secondary ginsenoside, exhibits notable pharmacological activity and is commonly hypothesized to originate from the dehydration of Rg3. In this work, we compared different conversion pathways using Rb1, R-Rg3 and S-Rg3 as the raw material under simple acid catalysis. Interestingly, the results indicate that the conversion follows this reaction activity order Rb1 > S-Rg3 > R-Rg3, which is contrary to the common understanding of Rg5 obtained from Rg3 by dehydration. Our experimental results have been fully confirmed by theoretical calculations and a NOESY analysis. The DFT analysis reveals that the free energies of S-Rg3 and R-Rg3 in generating carbocation are 7.56 mol/L and 7.57 mol/L, respectively, which are significantly higher than the free energy of 1.81 mol/L when Rb1 generates the same carbocation. This finding aligns with experimental evidence suggesting that Rb1 is more prone to generating Rg5 than Rg3. The findings from the nuclear magnetic resonance (NMR) analysis suggest that the fatty chains (C22-C27) in R-Rg3 and S-Rg3 adopt a Gauche conformation and an anti conformation with C16-C17 and C13-C17, respectively, due to the relatively weak repulsive van der Waals force. Therefore, the configuration of R-Rg3 is more conducive to the formation of intramolecular hydrogen bonds between 20C-OH and 12C-OH, whereas S-Rg3 lacks this capability. Consequently, this also explains the fact that S-Rg3 is more prone to dehydration to generate Rg5 than R-Rg3. Additionally, our research reveals that the synthetic route of Rg5 derived from protopanaxadiol (PPD)-type ginsenosides (including Rb1, Rb2, Rb3, Rc and Rd) exhibits notable advantages in terms of efficacy, purity and yield when compared to the pathway originating from Rg3. Moreover, this study presents a highly effective and practical approach for the extensive synthesis of Rg5, thereby facilitating the exploration of its pharmacological properties and potential application in drug discovery.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/química , Desidratação , Conformação Molecular , Espectroscopia de Ressonância Magnética , Panax/metabolismo
5.
Angew Chem Int Ed Engl ; 62(20): e202300934, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36918397

RESUMO

Though the flourishment of materials with multiple resonance (MR) in blue to green regions, red-emissive MR emitters are still rare in literatures, which definitely should be resolved for further applications. Herein, we report a simple molecular design strategy for the construction of pure-red MR emitters by conjugate charge transfer, which could greatly enhance the π-conjugation degree and charge-transfer property of the target molecule while maintaining the basic feature of MR, leading to a significant redshift of more than 128 nm compared to the selected parent MR core. The proof-of-concept emitter PPZ-BN exhibited a pure-red emission with a dominant peak at 613 nm and a small full-width-at-half-maximum of 0.16 eV (48 nm). The optimized organic light-emitting diode showed a high external quantum efficiency of 26.9 %, a small efficiency roll-off, and an excellent operation stability (LT99) of more than 43 hours at an initial luminance of 10 000 cd m-2 .

6.
Angew Chem Int Ed Engl ; 62(48): e202313254, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37806966

RESUMO

Extending the π-skeletons of multi-resonance (MR) organoboron emitters can feasibly modulate their optoelectronic properties. Here, we first adopt the indolo[3,2-b]indole (32bID) segment as a multi-nitrogen bridge and develop a high-efficiency π-extended narrowband green emitter. This moiety establishes not only a high-yield one-shot multiple Bora-Friedel-Crafts reaction towards a π-extended MR skeleton, but a compact N-ethylene-N motif for a red-shifted narrowband emission. An emission peak at 524 nm, a small full width at half maximum of 25 nm and a high photoluminescence quantum yield of 96 % are concurrently obtained in dilute toluene. The extended molecular plane also results in a large horizontal emitting dipole orientation ratio of 87 %. A maximum external quantum efficiency (EQE) of 36.6 % and a maximum power efficiency of 135.2 lm/W are thereafter recorded for the corresponding device, also allowing a low efficiency roll-off with EQEs of 34.5 % and 28.1 % at luminance of 1,000 cd/m2 and 10,000 cd/m2 , respectively.

7.
Chemistry ; 28(27): e202104624, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35229924

RESUMO

Narrowband, full-color, and quenching-resistant emitters are urgently needed for the next generation high-resolution displays. Though the flourishment of narrowband multiple resonance (MR) emitters in blue region, these materials still face thorny challenges such as effective light-color regulation strategies and concentration-induced spectral broadening/emission quenching. Herein, the research status of an effective "decoration strategy for para B position" is highlighted. On one hand, the introduction of an electron donor or acceptor could induce a hypsochromic- or bathochromic-shift emission, respectively, without undesirable FWHM broadening. On the other hand, a more advanced molecular motif is further proposed through adopting a peripheral benzene ring on the para position of the B-substituted phenyl in MR core to construct the high-purity, high-efficiency, quenching-resistant and stable MR emitters. Such concept is expected to provide a possible way for the modification, optimization and expansion of MR emitters to meet more possible applications.

8.
Analyst ; 147(8): 1695-1701, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35332355

RESUMO

Lipid droplets (LDs) have recently been reported as an attractive target for cancer diagnosis and treatment, owing to their special structure or microenvironment changes in cancer development and resistance. However, the relationship between the biothiol level of LDs and cancer is still poorly understood, partially owing to the absence of effective molecular tools. Herein, we developed a LD-targetable and biothiol-sensitive fluorescent probe, BTDA-RSS, by introducing 2,4-dinitrobenzenesulfonyl (DNBS) as the biothiol reaction group into a benzothiazolyl derivative. BTDA-RSS displayed a marked and rapid fluorescence turn-on response toward biothiols, due to the biothiol-triggered cleavage of DNBS to yield the highly fluorescent benzothiazolyl iminocoumarin BTDA. In addition, the probe shows significant LD-targetable ability, and has been applied for imaging endogenous/exogenous biothiol changes in LDs. Importantly, BTDA-RSS has successfully been utilized to distinguish cancerous cells/tissues from normal cells/tissues with excellent contrast. Surprisingly, we demonstrated for the first time the visualization of LD biothiols in surgical specimens from cancer patients, thereby holding great potential for the application of BTDA-RSS in the clinical diagnosis of human cancers.


Assuntos
Corantes Fluorescentes , Neoplasias , Corantes Fluorescentes/química , Humanos , Gotículas Lipídicas , Microscopia de Fluorescência/métodos , Neoplasias/diagnóstico , Espectrometria de Fluorescência , Microambiente Tumoral
9.
Luminescence ; 37(8): 1395-1403, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35724987

RESUMO

A water-soluble fluorescent probe BPN, by introducing a piperazine as the pH-sensitive fluorescence signaling motif to the hydrophilic propionic acid-substituted 1,8-naphthalimide fluorophore, is highly sensitive to pH changes within cytoplasm matrix in living cells, as well as pH-related diseases models. Owing to the protonation-induced inhibition of the photoinduced electron transfer (PET) from piperazine to naphthalimide fluorophore, BPN displayed a significant fluorescence enhancement (more than 131-fold) upon the pH decreasing from 11.0 to 3.0. The linear range was between pH 6.4 to 8.0 with a pKa value of 6.69 near the physiological pH, which was suitable for cytosolic pH research. Furthermore, BPN exhibited a large Stokes shift (142 nm), good water solubility, excellent photostability, high selectivity and low cytotoxicity. All these advantages were particularly beneficial for intracellular pH imaging. Using BPN, we demonstrated the real-time monitoring of cytosolic pH changes in living cells. Most importantly, BPN has not only been successfully applied for distinguishing inflammation in mice, but also the surgical specimens of cancer tissue, making it of great potential application in cancer diagnosis.


Assuntos
Corantes Fluorescentes , Naftalimidas , Animais , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Inflamação/diagnóstico por imagem , Camundongos , Piperazinas , Água
10.
Angew Chem Int Ed Engl ; 61(24): e202202380, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35363418

RESUMO

Herein, we report a general strategy for achieving ultra-pure green emissions by suppressing the shoulder peaks in the emission spectra of conventional polycyclic aromatic hydrocarbons (PAHs). Through precise synthetic fusion of multi-resonance (MR) fragments with conventional PAH, extended π-conjugation lengths, increased molecular rigidity, and reduced vibrational frequency could be simultaneously realized. The proof-of-concept emitters exhibited ultra-pure green emissions with dominant peaks at ca. 521 nm, photoluminescence quantum yields that are greater than 99 %, a small full-width-at-half-maximum of 23 nm, and CIE coordinates of (0.16, 0.77). The bottom-emitting organic light-emitting diode (OLED) exhibited a record-high CIEy value of 0.74 and a high maximum external quantum efficiency of 30.5 %. The top-emitting OLED not only achieved a BT.2020 green color (CIE: 0.17, 0.78) for the first time but also showed superior performance among all green OLED devices, with a current efficiency of 220 cd A- .

11.
Angew Chem Int Ed Engl ; 61(2): e202113206, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34636127

RESUMO

Multiple resonance (MR) emitters are promising for highly efficient organic light-emitting diodes (OLEDs) with narrowband emission; however, they still face intractable challenges with concentration-caused emission quenching, exciton annihilation, and spectral broadening. In this study, sterically wrapped MR dopants with a fluorescent MR core sandwiched by bulk substituents were developed to address the intractable challenges by reducing intermolecular interactions. Consequently, high photo-luminance quantum yields of ≥90 % and small full width at half maximums (FWHMs) of ≤25 nm over a wide range of dopant concentrations (1-20 wt %) were recorded. In addition, we demonstrated that the sandwiched MR emitter can effectively suppress Dexter interaction when doped in a thermally activated delayed fluorescence sensitizer, eliminating exciton loss through dopant triplet. Within the above dopant concentration range, the optimal emitter realizes remarkably high maximum external quantum efficiencies of 36.3-37.2 %, identical small FWHMs of 24 nm, and alleviated efficiency roll-offs in OLEDs.

12.
Angew Chem Int Ed Engl ; 61(14): e202117181, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35092123

RESUMO

Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m-2 after 94 hours.

13.
Angew Chem Int Ed Engl ; 61(52): e202213585, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36281782

RESUMO

A novel macrocycle of B/N-doped calix[4]arene (C-BN) was synthesized by a one-shot double boronation. Owing to the structural tension and electron-donating properties of the nitrogen atoms in the macrocycle, reaction selectively proceeds between the adjacent benzene rings outside the macrocycle. C-BN shows a highly centrosymmetric structure with two multiple resonance (MR) fragments bridged by tertiary amine groups at the 1,3 positions of the benzene ring. Benefiting from the large intermolecular distance (>4.6 Å) between adjacent MR-emitting cores, C-BN also exhibits excellent narrowband emitting features against aggregation-induced quenching and spectrum broadening. Optimized organic light-emitting diode devices based on C-BN exhibit high maximum external quantum efficiencies of 24.7-26.6 % and small full width at half maximums of 25-28 nm over a wide doping range of 1-12 wt %.

14.
Angew Chem Int Ed Engl ; 61(45): e202212861, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36129450

RESUMO

Strategies to enhance the ratio of the molecular horizontal emitting dipole orientation (Θ∥ ) for thermally activated delayed fluorescence (TADF) emitters have unlocked the full potential of efficiencies for the evaporated devices, which, however, remain elusive for the solution-processed ones. Here, a strategic molecular design for solution processable TADF emitters featuring high Θ∥ s is proposed by attaching flexible chains ended with bipolar 9,9'-spirobi[fluorene] subunits as anchoring groups onto TADF emitting core. It's unveiled that the anchoring groups not only enhance the horizontal orientation via enlarging molecular planarity, but also benefit the high photoluminescence in pristine films. The corresponding non-doped solution processable OLEDs substantiate an unprecedented maximum external quantum efficiency (EQEmax )>30 %. Meanwhile, combining these compounds as TADF sensitizers, and multiple resonance final emitter, solution-processed OLEDs achieve an EQEmax of 25.6 % with a narrow full width at half maximum of 29 nm.

15.
Angew Chem Int Ed Engl ; 61(38): e202206916, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35754001

RESUMO

Polycyclo-heteraborin multi-resonance (MR) emitters are promising for high color-purity organic light-emitting diodes (OLEDs). Here, unlike the most common heteroatom ternary-doped (X/B/N) frameworks, a binary-doped (B/N) skeleton is reported with a large energy band for wide-range color tunability. Based on this parent-segment, a "one-pot" catalyst-free borylation method is developed which generates deep blue to pure green MR emitters from readily available starting materials, with peaks at 426-532 nm and full-width-at-half-maxima of 27-38 nm. Impressively, a maximum external quantum efficiency of nearly 40 % is recorded for the corresponding device with Commission Internationale de l'Eclairage coordinates of (0.14, 0.16), representing the state-of-the-art performances. This work presents a new paradigm and synthesis of B/N-doped MR emitters and will motivate the study of other novel frameworks.

16.
Angew Chem Int Ed Engl ; 61(40): e202207293, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35749578

RESUMO

Despite the remarkable multiple resonance (MR) optoelectronic properties of organic nanographenes with boron and nitrogen atoms disposed para to each other, the synthetic procedures are sophisticated with low yields and the molecular skeletons are limited. Here, a new paradigm of easy-to-access MR emitter is constructed by simplifying the multiborylation through amine-directed formation of B-N bonds while introducing an additional para-positioned nitrogen atom to trigger the MR effect. The proof-of-concept molecules exhibit narrowband emissions at 480 and 490 nm, with full width at half maxima (FWHMs) of only 29 and 34 nm. The devices based on them showed external quantum efficiencies (EQE) of >33.0 %, which remained above 24.0 % even at a high brightness of 5000 cd m-2 . This is the first example of MR emitters with a B-N covalent bond, not only decreasing the synthesis difficulty but also increasing the diversity of MR skeletons for emerging new optoelectronic properties.

17.
Anal Chem ; 93(6): 3241-3249, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539094

RESUMO

Mitophagy plays a crucial role in maintaining intracellular homeostasis through the removal of dysfunctional mitochondria and recycling their constituents in a lysosome-degradative pathway, which leads to microenvironmental changes within mitochondria, such as the pH, viscosity, and polarity. However, most of the mitochondrial fluorescence viscosity probes only rely on electrostatic attraction and readily leak out from the mitochondria during mitophagy with a decreased membrane potential, thus easily leading to an inaccurate detection of viscosity changes. In this work, we report a mitochondria-immobilized NIR-emissive aggregation-induced emission (AIE) probe CS-Py-BC, which allows for an off-on fluorescence response to viscosity, thus enabling the real-time monitoring viscosity variation during mitophagy. This system consists of a cyanostilbene skeleton as the AIE active core and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl chloride subunit that induces mitochondrial immobilization. As the viscosity increased from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CS-Py-BC exhibited an about 92-fold increase in fluorescence intensity at 650 nm, which might be attributed to the restriction of rotation and inhibition of twisted intramolecular charge transfer in a high viscosity system. We also revealed that CS-Py-BC could be well immobilized onto mitochondria, regardless of the mitochondrial membrane potential fluctuation. Most importantly, using CS-Py-BC, we have successfully visualized the increased mitochondrial viscosity during starvation or rapamycin-induced mitophagy in real time. All these features render CS-Py-BC a promising candidate to investigate mitophagy-associated dynamic physiological and pathological processes.


Assuntos
Corantes Fluorescentes , Mitofagia , Células HeLa , Humanos , Mitocôndrias , Viscosidade
18.
Eur J Immunol ; 50(5): 712-724, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31981231

RESUMO

Unlike hematological malignancies, solid tumors have proved to be less susceptible to chimeric antigen receptor (CAR)-T cell therapy, which is partially caused by reduced accumulation of therapeutic T cells in tumor site. Since efficient trafficking is the precondition and pivotal step for infused CAR-T cells to exhibit their anti-tumor function, strategies are highly needed to improve the trafficking ability of CAR-T cells for solid tumor treatment. Here, based on natural lymphocyte chemotaxis theory and characteristics of solid tumor microenvironments, we explored the possibility of enhancing CAR-T cell trafficking by using chemokine receptors. Our study found that compared with other chemokines, several CXCR2 ligands showed relatively high expression level in human hepatocellular carcinoma tumor tissues and cell lines. However, both human peripheral T cells and hepatocellular carcinoma tumor infiltrating T cells lacked expression of CXCR2. CXCR2-expressing CAR-T cells exhibited identical cytotoxicity but displayed significantly increased migration ability in vitro. In a xenograft tumor model, we found that expressing CXCR2 in CAR-T cells could significantly accelerate in vivo trafficking and tumor-specific accumulation, and improve anti-tumor effect of these cells.


Assuntos
Carcinoma Hepatocelular/terapia , Imunoterapia Adotiva/métodos , Neoplasias Hepáticas/terapia , Receptores de Antígenos Quiméricos/genética , Receptores de Interleucina-8B/genética , Linfócitos T Citotóxicos/imunologia , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Quimiocina CCL2/genética , Quimiocina CCL2/imunologia , Quimiocina CXCL5/genética , Quimiocina CXCL5/imunologia , Citotoxicidade Imunológica , Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Interleucina-8B/imunologia , Linfócitos T Citotóxicos/citologia , Carga Tumoral , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Anal Bioanal Chem ; 413(14): 3823-3831, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33934190

RESUMO

Heat stroke is a fatal condition which usually results in central nervous system dysfunction, organism damage and even death. The relationship between heat stroke and mitochondria is still relatively unknown due to a lack of suitable tools. Herein, an aggregation-induced emission (AIE) probe CSP, by introducing a pyridinium cation as the mitochondria-targeted group to an AIE active core cyanostilbene skeleton, is highly sensitive to viscosity changes due to the restriction of intramolecular motion (RIM) and inhibition of twisted intramolecular charge transfer (TICT) in high-viscosity systems. As expected, with the viscosity increasing from 0.903 cP (0% glycerol) to 965 cP (99% glycerol), CSP exhibited a significant enhancement (more than 117-fold) in fluorescence intensity at 625 nm, with an excellent linear relationship between log I 625 nm and log η (R2 = 0.9869, slope as high as 0.6727). More importantly, using CSP we have successfully monitored the decreased mitochondrial viscosity during heat stroke for the first time. All these features render the probe a promising candidate for further understanding the mechanism underlying mitochondria-associated heat stroke.


Assuntos
Golpe de Calor/patologia , Mitocôndrias/patologia , Células A549 , Células HeLa , Humanos , Microscopia de Fluorescência , Mitocôndrias/química , Imagem Óptica , Viscosidade
20.
Langenbecks Arch Surg ; 406(7): 2553-2562, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34436661

RESUMO

PURPOSE: The aim of the study was to evaluate the usefulness of a novel modified Meso-Rex bypass surgical technique with umbilical vein recanalization and intra-operative stenting to treat portal vein cavernous transformation. METHODS: In total, 13 portal vein cavernous transformation patients underwent Meso-Rex bypass surgery, consisting of bypass grafts between the superior mesenteric vein (SMV) and the recess of Rex as well as through the ligamentum teres hepatis without stent implantation (Group A, n = 9) and umbilical vein recanalization with intra-operative stent implantation (Group B, n = 4). RESULTS: In Group A, the bypass diameter was 0-6 mm (median 3 mm) and blood flow velocity 25-115 cm/s (median 72 cm/s) 1 month after Meso-Rex bypass surgery, with open bypass times of 0-67 months (median 6 months); 6 patients in this group developed postoperative Meso-Rex bypass occlusions. A patient in Group A treated with ligamentum teres hepatis recanalization needed a thrombectomy and stent implantation during a second surgery 2 days after the Meso-Rex bypass, because of bypass thrombosis and umbilical vein stenosis. In Group B, the average modified Meso-Rex bypass diameter was 5.5-6.5 mm (median 6 mm), and the bypass vessels remained open in all patients, with blood flow rates of 45-100 cm/s (median 76.5 cm/s) 1 month after the modified Meso-Rex bypass, up to the endpoint (15-33 months, median 24 months). The rate of bypass occlusions in Group A and Group B were 22.2% and 0%, 30.0% and 0%, and 55.6% and 0% at 1 month, 3 months, and 1 year, respectively, after bypass surgery. CONCLUSIONS: Our novel modified Meso-Rex bypass approach for portal vein cavernous transformation treatment was effective with excellent long-term bypass patency.


Assuntos
Hipertensão Portal , Humanos , Veias Mesentéricas , Veia Porta/cirurgia , Stents , Veias Umbilicais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa