Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Biochem Biophys Res Commun ; 723: 150220, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38850811

RESUMO

Aging is characterized as the process of functional decline in an organism from adulthood, often marked by a progressive loss of cellular function and systemic deterioration of multiple tissues. Among the numerous molecular, cellular, and systemic hallmarks associated with aging, mitochondrial dysfunction is considered one of the pivotal factors that initiates the aging process. During aging, mitochondria undergo varying degrees of damage, resulting in impaired energy production and disruption of the homeostatic regulation of mitochondrial quality control systems, which in turn affects cellular energy metabolism and results in cellular dysfunction, accelerating the aging process. AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) are two central kinase complexes responsible for sensing intracellular nutrient levels, regulating metabolic homeostasis, modulating aging and play a crucial role in maintaining the homeostatic balance of mitochondria. Our previous studies found that the novel compound tetramethylpyrazine nitrone (TBN) can protect mitochondria via the AMPK/mTOR pathway in many animal models, extending healthy lifespan through the Nrf2 signaling pathway in nematodes. Building upon this foundation, we have posited a reasonable hypothesis, TBN can improve mitochondrial function to delay aging by regulating the AMPK/mTORC1 signaling pathway. This study focuses on the C. elegans, exploring the impact and underlying mechanisms of TBN on aging and mitochondrial function (especially the mitochondrial quality control system) during the aging process. The present studies demonstrated that TBN extends lifespan of wild-type nematodes and is associated with the AMPK/mTORC1 signaling pathway. TBN elevated ATP and NAD+ levels in aging nematodes while orchestrating mitochondrial biogenesis and mitophagy. Moreover, TBN was observed to significantly enhance normal activities during aging in C. elegans, such as mobility and pharyngeal pumping, concurrently impeding lipofuscin accumulation that were closely associated with AMPK and mTORC1. This study not only highlights the delayed effects of TBN on aging but also underscores its potential application in strategies aimed at improving mitochondrial function via the AMPK/mTOR pathway in C. elegans.


Assuntos
Proteínas Quinases Ativadas por AMP , Envelhecimento , Caenorhabditis elegans , Alvo Mecanístico do Complexo 1 de Rapamicina , Mitocôndrias , Pirazinas , Transdução de Sinais , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Pirazinas/farmacologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento/metabolismo , Envelhecimento/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Óxidos de Nitrogênio/metabolismo
2.
Hum Mol Genet ; 30(16): 1484-1496, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33929499

RESUMO

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are serious neurodegenerative diseases. Although their pathogenesis is unclear, the abnormal accumulation of TAR DNA-binding protein of 43 kDa (TDP-43) is a pathological feature that exists in almost all patients. Thus far, there is no drug that can cure ALS/FTLD. Tetramethylpyrazine nitrone (TBN) is a derivative of tetramethylapyrazine, derived from the traditional Chinese medicine Ligusticum chuanxiong, which has been widely proven to have therapeutic effects on models of various neurodegenerative diseases. TBN is currently under clinical investigation for several indications including a Phase II trial of ALS. Here, we explored the therapeutic effect of TBN in an ALS/FTLD mouse model. We injected the TDP-43 M337V virus into the striatum of mice unilaterally and bilaterally, and then administered 30 mg/kg TBN intragastrically to observe changes in behavior and survival rate of mice. The results showed that in mice with unilateral injection of TDP-43M337V into the striatum, TBN improved motor deficits and cognitive impairment in the early stages of disease progression. In mice with bilateral injection of TDP-43M337V into the striatum, TBN not only improved motor function but also prolonged survival rate. Moreover, we show that its therapeutic effect may be through activation of the Akt/mTOR/GSK-3ß and AMPK/PGC-1α/Nrf2 signaling pathways. In summary, TBN is a promising agent for the treatment of ALS/FTLD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Camundongos
3.
Immun Ageing ; 20(1): 15, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005686

RESUMO

BACKGROUND: A wide spectrum of changes occurs in the brain with age, from molecular to morphological aspects, and inflammation accompanied by mitochondria dysfunction is one of the significant factors associated with age. Adiponectin (APN), an essential adipokine in glucose and lipid metabolism, is involved in the aging; however, its role in brain aging has not been adequately explored. Here, we aimed to explore the relationship between APN deficiency and brain aging using multiple biochemical and pharmacological methods to probe APN in humans, KO mice, primary microglia, and BV2 cells. RESULTS: We found that declining APN levels in aged human subjects correlated with dysregulated cytokine levels, while APN KO mice exhibited accelerated aging accompanied by learning and memory deficits, anxiety-like behaviors, neuroinflammation, and immunosenescence. APN-deficient mice displayed aggravated mitochondrial dysfunction and HDAC1 upregulation. In BV2 cells, the APN receptor agonist AdipoRon alleviated the mitochondrial deficits and aging markers induced by rotenone or antimycin A. HDAC1 antagonism by Compound 60 (Cpd 60) improved mitochondrial dysfunction and age-related inflammation, as validated in D-galactose-treated APN KO mice. CONCLUSION: These findings indicate that APN is a critical regulator of brain aging by preventing neuroinflammation associated with mitochondrial impairment via HDAC1 signaling.

4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982398

RESUMO

Artificial intelligence (AI) technology for image recognition has the potential to identify cancer stem cells (CSCs) in cultures and tissues. CSCs play an important role in the development and relapse of tumors. Although the characteristics of CSCs have been extensively studied, their morphological features remain elusive. The attempt to obtain an AI model identifying CSCs in culture showed the importance of images from spatially and temporally grown cultures of CSCs for deep learning to improve accuracy, but was insufficient. This study aimed to identify a process that is significantly efficient in increasing the accuracy values of the AI model output for predicting CSCs from phase-contrast images. An AI model of conditional generative adversarial network (CGAN) image translation for CSC identification predicted CSCs with various accuracy levels, and convolutional neural network classification of CSC phase-contrast images showed variation in the images. The accuracy of the AI model of CGAN image translation was increased by the AI model built by deep learning of selected CSC images with high accuracy previously calculated by another AI model. The workflow of building an AI model based on CGAN image translation could be useful for the AI prediction of CSCs.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Inteligência Artificial , Redes Neurais de Computação , Neoplasias/diagnóstico por imagem , Células-Tronco Neoplásicas , Processamento de Imagem Assistida por Computador/métodos
5.
Entropy (Basel) ; 25(10)2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37895498

RESUMO

The Minimum Vertex Weighted Coloring (MinVWC) problem is an important generalization of the classic Minimum Vertex Coloring (MinVC) problem which is NP-hard. Given a simple undirected graph G=(V,E), the MinVC problem is to find a coloring s.t. any pair of adjacent vertices are assigned different colors and the number of colors used is minimized. The MinVWC problem associates each vertex with a positive weight and defines the weight of a color to be the weight of its heaviest vertices, then the goal is the find a coloring that minimizes the sum of weights over all colors. Among various approaches, reduction is an effective one. It tries to obtain a subgraph whose optimal solutions can conveniently be extended into optimal ones for the whole graph, without costly branching. In this paper, we propose a reduction algorithm based on maximal clique enumeration. More specifically our algorithm utilizes a certain proportion of maximal cliques and obtains lower bounds in order to perform reductions. It alternates between clique sampling and graph reductions and consists of three successive procedures: promising clique reductions, better bound reductions and post reductions. Experimental results show that our algorithm returns considerably smaller subgraphs for numerous large benchmark graphs, compared to the most recent method named RedLS. Also, we evaluate individual impacts and some practical properties of our algorithm. Furthermore, we have a theorem which indicates that the reduction effects of our algorithm are equivalent to that of a counterpart which enumerates all maximal cliques in the whole graph if the run time is sufficiently long.

6.
Biochem Biophys Res Commun ; 614: 107-113, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35576681

RESUMO

SKN-1, the ortholog of mammalian Nrf2 proteins, is a transcription factor that plays an important role in oxidative stress resistance and longevity. Similar to other defense systems, the Nrf2-mediated stress response is compromised in aging and neurodegenerative diseases. Our previous studies demonstrated that tetramethylpyrazine nitrone (TBN), a derivative of tetramethylpyrazine armed with a potent free radical-scavenging nitrone moiety, exerted multifunctional neuroprotection in neurological and other diseases. However, the ability of TBN to extend a healthy lifespan and its underlying mechanisms of action are not yet clear. C. elegans have become a popular animal model in aging research. Herein, we demonstrate that TBN can extend the lifespan, promote age-associated health indicators, and restore mitochondrial function in C. elegans. TBN also significantly reduced ROS levels and superoxide accumulation in C. elegans. We show that TBN-mediated lifespan extension is SKN-1dependent. The present study provides valuable insights into the mechanisms by which TBN inhibits aging via the Nrf2/SKN-1 pathway in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Proteínas de Ligação a DNA/metabolismo , Longevidade/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Pirazinas , Transdução de Sinais , Fatores de Transcrição/metabolismo
7.
Genomics ; 113(3): 1396-1406, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33711454

RESUMO

Rice is one of the most important cereal crops, providing the daily dietary intake for approximately 50% of the global human population. Here, we re-sequenced 259 rice accessions, generating 1371.65 Gb of raw data. Furthermore, we performed genome-wide association studies (GWAS) on 13 agronomic traits using 2.8 million single nucleotide polymorphisms (SNPs) characterized in 259 rice accessions. Phenotypic data and best linear unbiased prediction (BLUP) values of each of the 13 traits over two years of each trait were used for the GWAS. The results showed that 816 SNP signals were significantly associated with the 13 agronomic traits. Then we detected candidate genes related to target traits within 200 kb upstream and downstream of the associated SNP loci, based on linkage disequilibrium (LD) blocks in the whole rice genome. These candidate genes were further identified through haplotype block constructions. This comprehensive study provides a timely and important genomic resource for breeding high yielding rice cultivars.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Genoma de Planta , Humanos , Desequilíbrio de Ligação , Oryza/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
8.
Int J Mol Sci ; 23(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35163801

RESUMO

Transgenic mouse models of Alzheimer's disease (AD) overexpress mutations of the human amyloid protein precursor (APP) and presenilin-1 (PSEN1) genes, which are known causes of amyloid pathology in familial AD. However, animal models for studying AD in the context of aging and age-related co-morbidities, such as blood-brain barrier (BBB) disruptions, are lacking. More recently, aged and progeroid mouse models have been proposed as alternatives to study aging-related AD, but the toxicity of murine amyloid-beta protein (Aß) is not well defined. In this study, we aimed to study the potential toxicity of murine Aß on brain endothelial cells and astrocytes, which are important components of the BBB, using mouse brain endothelial cells (bEnd.3) and astrocytes (C8-D1A). Murine-soluble Aß (1-42) oligomers (sAßO42) (10 µM) induced negligible injuries in an endothelial monolayer but induced significant barrier disruptions in a bEnd.3 and C8-D1A co-culture. Similar results of endothelial perturbation were observed in a bEnd.3 monolayer treated with astrocyte-conditioned medium (ACM) generated by astrocytes exposed to sAßO42 (ACM-sAßO42), while additional exogenous sAßO42 did not cause further damage. Western blot analysis showed that ACM-sAßO42 altered the basal activities of vascular endothelial growth factor receptor 2 (VEGFR2), eNOS, and the signaling of the MEK/ERK and Akt pathways in bEnd.3. Our results showed that murine sAßO42 was moderately toxic to an endothelial and astrocyte co-culture. These damaging effects on the endothelial barrier were induced by deleterious soluble factors released from astrocytes, which disrupted endothelial VEGFR2 signaling and perturbed cell survival and barrier stabilization.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Astrócitos/citologia , Barreira Hematoencefálica/citologia , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/toxicidade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Modelos Biológicos
9.
Entropy (Basel) ; 24(12)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36554251

RESUMO

The (weighted) partial maximum satisfiability ((W)PMS) problem is an important generalization of the classic problem of propositional (Boolean) satisfiability with a wide range of real-world applications. In this paper, we propose an initialization and a diversification strategy to improve local search for the (W)PMS problem. Our initialization strategy is based on a novel definition of variables' structural entropy, and it aims to generate a solution that is close to a high-quality feasible one. Then, our diversification strategy picks a variable in two possible ways, depending on a parameter: continuing to pick variables with the best benefits or focusing on a clause with the greatest penalty and then selecting variables probabilistically. Based on these strategies, we developed a local search solver dubbed ImSATLike, as well as a hybrid solver ImSATLike-TT, and experimental results on (weighted) partial MaxSAT instances in recent MaxSAT Evaluations show that they outperform or have nearly the same performances as state-of-the-art local search and hybrid competitors, respectively, in general. Furthermore, we carried out experiments to confirm the individual impacts of each proposed strategy.

10.
Neurochem Res ; 46(12): 3135-3148, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34398408

RESUMO

Depression is the most common psychiatric disorder associated with brain and immune system abnormalities. In recent years, xanthohumol (Xn) a bioactive prenylated flavonoid has received ample attention for its polypharmacological effects, therefore, here we aimed to explore the protective effects of Xn against the LPS-induced depressive-like symptoms mediated by inflammation and oxidative stress. We tested the effect of Xn against LPS-induced behavioural changes in mice by means of forced swimming test (FST), tail suspention test (TST), sucrose preference test (SPT) and open field test (OPT). Examined the neuroinflammation and oxido-nitrosative stress (O&NS) markers and analyze Nrf2 and NF-κB signalling pathways in the hippocampus. Our results indicated that peripheral repeated administration of lipopolysaccharides (LPS) (1 mg/kg, intra peritoneally) induced depressive-like behavior, neuroinflammation and O&NS in mice. Pretreatment with Xn (10 and 20 mg/kg, intra gastrically) reverse the behavioural impairments prophylactically as obvious in the FST and TST without effecting locomotion, however only 20 mg dose improve anhedonic behavior as observed in SPT. Similarly, Xn pretreatment in dose-dependent manner prevented the LPS induced neuro-inflammation and O&NS. Immunofluorescence analysis showed that Xn reduced activated gliosis via attenuation of Iba-1 and GFAP in hippocampus. In addition, Xn considerably reduced the expression of phospho-NF-κB and cleaved caspase-3 while enhanced Nrf2 and HO-1 expression in the hippocampus. To the best of our knowledge, this is the first study to examine the underlying beneficial prophylactic effects of the Xn in neuroinflammation and O&NS mediating depressive-like behaviors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Transtorno Depressivo/tratamento farmacológico , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Propiofenonas/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Citocinas , Transtorno Depressivo/induzido quimicamente , Transtorno Depressivo/metabolismo , Transtorno Depressivo/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/genética , NF-kappa B/genética , Estresse Oxidativo , Transdução de Sinais
11.
J Pineal Res ; 71(4): e12774, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34617321

RESUMO

While melatonin is known to have protective effects in mitochondria-related diseases, aging, and neurodegenerative disorders, there is poor understanding of the effects of melatonin treatment on mitophagy in Alzheimer's disease (AD). We used proteomic analysis to investigate the effects and underlying molecular mechanisms of oral melatonin treatment on mitophagy in the hippocampus of 4-month-old wild-type mice versus age-matched 5 × FAD mice, an animal model of AD. 5 × FAD mice showed disordered mitophagy and mitochondrial dysfunction as revealed by increased mtDNA, mitochondrial marker proteins and MDA production, decreased electron transport chain proteins and ATP levels, and co-localization of Lamp1 and Tomm20. Melatonin treatment reversed the abnormal expression of proteins in the signaling pathway of lysosomes, pathologic phagocytosis of microglia, and mitochondrial energy metabolism. Moreover, melatonin restored mitophagy by improving mitophagosome-lysosome fusion via Mcoln1, and thus, ameliorated mitochondrial functions, attenuated Aß pathology, and improved cognition. Concurrent treatment with chloroquine and melatonin blocked the positive behavioral and biochemical effects of administration with melatonin alone. Taken in concert, these results suggest that melatonin reduces AD-related deficits in mitophagy such that the drug should be considered as a therapeutic candidate for the treatment of AD.


Assuntos
Doença de Alzheimer , Melatonina , Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/genética , Animais , Cognição , Melatonina/farmacologia , Camundongos , Mitofagia , Proteômica
12.
Entropy (Basel) ; 23(3)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806451

RESUMO

The satisfiability (SAT) problem is a core problem in computer science. Existing studies have shown that most industrial SAT instances can be effectively solved by modern SAT solvers while random SAT instances cannot. It is believed that the structural characteristics of different SAT formula classes are the reasons behind this difference. In this paper, we study the structural properties of propositional formulas in conjunctive normal form (CNF) by the principle of structural entropy of formulas. First, we used structural entropy to measure the complex structure of a formula and found that the difficulty solving the formula is related to the structural entropy of the formula. The smaller the compressing information of a formula, the more difficult it is to solve the formula. Secondly, we proposed a λ-approximation strategy to approximate the structural entropy of large formulas. The experimental results showed that the proposed strategy can effectively approximate the structural entropy of the original formula and that the approximation ratio is more than 92%. Finally, we analyzed the structural properties of a formula in the solution process and found that a local search solver tends to select variables in different communities to perform the next round of searches during a search and that the structural entropy of a variable affects the probability of the variable being flipped. By using these conclusions, we also proposed an initial candidate solution generation strategy for a local search for SAT, and the experimental results showed that this strategy effectively improves the performance of the solvers CCAsat and Sparrow2011 when incorporated into these two solvers.

13.
J Pineal Res ; 69(2): e12667, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32375205

RESUMO

Major depressive disorder (MDD) is a life-threatening illness characterized by mood changes and high rates of suicide. Although the role of neuroinflammation in MMD has been studied, the mechanistic interplay between antidepressants, neuroinflammation, and autophagy is yet to be investigated. The present study investigated the effect of melatonin on LPS-induced neuroinflammation, depression, and autophagy impairment. Our results showed that in mice, lipopolysaccharide (LPS) treatment induced depressive-like behaviors and caused autophagy impairment by dysregulating ATG genes. Moreover, LPS treatment significantly increased the levels of cytokines (TNFα, IL-1ß, IL-6), enhanced NF-ᴋB phosphorylation, caused glial (astrocytes and microglia) cell activation, dysregulated FOXO3a expression, increased the levels of redox signaling molecules such as ROS/TBARs, and altered expression of Nrf2, SOD2, and HO-1. Melatonin treatment significantly abolished the effects of LPS, as demonstrated by improved depressive-like behaviors, normalized autophagy-related gene expression, and reduced levels of cytokines. Further, we investigated the role of autophagy in LPS-induced depressive-like behavior and neuroinflammation using autophagy inhibitors 3-MA and Ly294002. Interestingly, inhibitor treatment significantly abolished and reversed the anti-depressive, pro-autophagy, and anti-inflammatory effects of melatonin. The present study concludes that the anti-depressive effects of melatonin in LPS-induced depression might be mediated via autophagy modulation through FOXO3a signaling.


Assuntos
Astrócitos/metabolismo , Transtorno Depressivo Maior , Proteína Forkhead Box O3/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Melatonina/farmacologia , Microglia/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Animais , Astrócitos/patologia , Autofagia/efeitos dos fármacos , Transtorno Depressivo Maior/induzido quimicamente , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/patologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Masculino , Camundongos
14.
Int J Mol Sci ; 21(3)2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32050518

RESUMO

High temperature at anthesis is one of the most serious stress factors for rice (Oryza sativa L.) production, causing irreversible yield losses and reduces grain quality. Illustration of thermotolerance mechanism is of great importance to accelerate rice breeding aimed at thermotolerance improvement. Here, we identified a new thermotolerant germplasm, SDWG005. Microscopical analysis found that stable anther structure of SDWG005 under stress may contribute to its thermotolerance. Dynamic transcriptomic analysis totally identified 3559 differentially expressed genes (DEGs) in SDWG005 anthers at anthesis under heat treatments, including 477, 869, 2335, and 2210 for 1, 2, 6, and 12 h, respectively; however, only 131 were regulated across all four-time-points. The DEGs were divided into nine clusters according to their expressions in these heat treatments. Further analysis indicated that some main gene categories involved in heat-response of SDWG005 anthers, such as transcription factors, nucleic acid and protein metabolisms related genes, etc. Comparison with previous studies indicates that a core gene-set may exist for thermotolerance mechanism. Expression and polymorphic analysis of agmatine-coumarin-acyltransferase gene OsACT in different accessions suggested that it may involve in SDWG005 thermotolerance. This study improves our understanding of thermotolerance mechanisms in rice anthers during anthesis, and also lays foundation for breeding thermotolerant varieties via molecular breeding.


Assuntos
Oryza/genética , Termotolerância , Transcriptoma , Acetiltransferases/genética , Acetiltransferases/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Proteome Res ; 18(4): 1542-1552, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30484658

RESUMO

Donepezil is a clinically approved acetylcholinesterase inhibitor (AChEI) for cognitive improvement in Alzheimer's disease (AD). Donepezil has been used as a first-line agent for the symptomatic treatment of AD, but its ability to modify disease pathology and underlying mechanisms is not clear. We investigated the protective effects and underlying mechanisms of donepezil in AD-related triple transgenic (APPSwe/PSEN1M146V/MAPTP301L) mouse model (3×Tg-AD). Mice (8-month old) were treated with donepezil (1.3 mg/kg) for 4 months and evaluated by behavioral tests for assessment of cognitive functions, and the hippocampal tissues were examined by protein analysis and quantitative proteomics. Behavioral tests showed that donepezil significantly improved the cognitive capabilities of 3×Tg-AD mice. The levels of soluble and insoluble amyloid beta proteins (Aß1-40 and Aß1-42) and senile plaques were reduced in the hippocampus. Golgi staining of the hippocampus showed that donepezil prevented dendritic spine loss in hippocampal neurons of 3×Tg-AD mice. Proteomic studies of the hippocampal tissues identified 3131 proteins with altered expression related to AD pathology, of which 262 could be significantly reversed with donepezil treatment. Bioinformatics with functional analysis and protein-protein interaction (PPI) network mapping showed that donepezil significantly elevated the protein levels of PINK 1, NFASC, MYLK2, and NRAS in the hippocampus, and modulated the biological pathways of axon guidance, mitophagy, mTOR, and MAPK signaling. The substantial upregulation of PINK 1 with donepezil was further verified by Western blotting. Donepezil exhibited neuroprotective effects via multiple mechanisms. In particular, PINK 1 is related to mitophagy and cellular protection from mitochondrial dysfunction, which might play important roles in AD pathogenesis and represent a potential therapeutic target.


Assuntos
Doença de Alzheimer/metabolismo , Donepezila/farmacologia , Hipocampo , Proteínas Quinases/metabolismo , Proteoma , Peptídeos beta-Amiloides/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cognição , Modelos Animais de Doenças , Feminino , Hipocampo/química , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Proteoma/análise , Proteoma/efeitos dos fármacos , Proteômica
16.
Mar Drugs ; 17(4)2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30978965

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by the loss of dopaminergic neurons, leading to the motor dysfunctions of patients. Although the etiology of PD is still unclear, the death of dopaminergic neurons during PD progress was revealed to be associated with the abnormal aggregation of α-synuclein, the elevation of oxidative stress, the dysfunction of mitochondrial functions, and the increase of neuroinflammation. However, current anti-PD therapies could only produce symptom-relieving effects, because they could not provide neuroprotective effects, stop or delay the degeneration of dopaminergic neurons. Marine-derived natural compounds, with their novel chemical structures and unique biological activities, may provide anti-PD neuroprotective effects. In this study, we have summarized anti-PD marine-derived natural products which have shown pharmacological activities by acting on various PD targets, such as α-synuclein, monoamine oxidase B, and reactive oxygen species. Moreover, marine-derived natural compounds currently evaluated in the clinical trials for the treatment of PD are also discussed.


Assuntos
Organismos Aquáticos , Fatores Biológicos/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Animais , Fatores Biológicos/isolamento & purificação , Fatores Biológicos/uso terapêutico , Ensaios Clínicos como Assunto , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/patologia , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/patologia
18.
Arch Toxicol ; 92(4): 1363-1382, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29383422

RESUMO

Excessive copper intake can lead to neurotoxicity, but there is a lack of comprehensive understanding on the potential impact of copper exposure especially at a low-dose on brain. We used 3xTg-AD mice to explore the potential neurotoxicity of chronic, low-dose copper treatment (0.13 ppm copper chloride in drinking water) on behavior and the brain hippocampal mitochondrial and nuclear proteome. Low-dose copper increased the spatial memory impairment of these animals, increased accumulation of intracellular amyloid 1-42 (Aß1-42), decreased ATP content, increased the positive staining of 8-hydroxyguanosine (8-OHdG), a marker of DNA oxidative damage, and caused apoptosis and a decrease in synaptic proteins. Mitochondrial proteomic analysis by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) revealed modulation of 24 hippocampal mitochondrial proteins (14 increased and 10 decreased) in copper-treated vs. untreated 3xTg-AD mice. Nuclear proteomic analysis revealed 43 modulated hippocampal nuclear proteins (25 increased and 18 decreased) in copper-treated 3xTg-AD vs. untreated mice. Classification of modulated mitochondrial and nuclear proteins included functional categories such as energy metabolism, synaptic-related proteins, DNA damage and apoptosis-related proteins, and oxidative stress-related proteins. Among these differentially expressed mitochondrial and nuclear proteins, nine proteins were abnormally expressed in both hippocampus mitochondria and nuclei, including electron transport chain-related proteins NADH dehydrogenase 1 alpha subcomplex subunit 10 (NDUAA), cytochrome b-c1 complex subunit Rieske (UCRI), cytochrome c oxidase subunit 5B (COX5B), and ATP synthase subunit d (ATP5H), glycolytic-related pyruvate kinase PKM (KPYM) and pyruvate dehydrogenase E1 component subunit alpha (ODPA). Furthermore, we found coenzyme Q10 (CoQ10), an endogenous mitochondrial protective factor/antioxidant, modulated the expression of 12 differentially expressed hippocampal proteins (4 increased and 8 decreased), which could be classified in functional categories such as glycolysis and synaptic-related proteins, oxidative stress-related proteins, implying that CoQ10 improved synaptic function, suppress oxidative stress, and regulate glycolysis. For the proteomics study, we validated the expression of several proteins related to synapses, DNA and apoptosis. The data confirmed that synapsin-2, a synaptic-related protein, was significantly decreased in both mitochondria and nuclei of copper-exposed 3xTg-AD mice. In mitochondria, dynamin-1 (DYN1), an apoptosis-related proteins, was significantly decreased. In the cellular nuclei, paraspeckle protein 1 (PSPC1) and purin-rich element-binding protein alpha (Purα), two DNA damage-related proteins, were significantly decreased and increased, respectively. We conclude that low-dose copper exposure exacerbates the spatial memory impairment of 3xTg-AD mice and perturbs multiple biological/pathogenic processes by dysregulating the mitochondrial and nuclear proteome. Exposure to copper might therefore contribute to the evolution of AD.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Encéfalo/efeitos dos fármacos , Cobre/toxicidade , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/ultraestrutura , Transtornos da Memória , Camundongos , Camundongos Transgênicos , Proteômica , Memória Espacial
19.
J Proteome Res ; 16(3): 1150-1166, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28102082

RESUMO

Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.


Assuntos
Córtex Cerebral/química , Regulação da Expressão Gênica , Proteômica/métodos , Acidente Vascular Cerebral/metabolismo , Animais , Doença Crônica , Modelos Animais de Doenças , Inflamação/genética , Macaca fascicularis , Imageamento por Ressonância Magnética , Neurogênese/genética , Mapas de Interação de Proteínas
20.
J Neurochem ; 141(3): 373-386, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28160291

RESUMO

Adding a free radical-scavenging nitrone moiety on tetramethylpyrazine, we have previously synthesized a chemical named 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (tetramethylpyrazine nitrone, or TBN) and proved its neuroprotective effect but with limited understanding of its mechanism. Here we ask if TBN protects retinal ganglion cells (RGCs) against excitotoxicity induced by NMDA and explore the underlying mechanism. NMDA was intravitreally injected to induce RGC injury in rats, followed by daily intraperitoneal administrations of TBN. Measurements of TBN concentration at different times after intraperitoneal administration showed that more than 200 µM TBN reached the aqueous humor quickly. Then RGCs' survival was evaluated by quantifying Brn3-positive cells, and retinal functions were examined by electroretinogram and visual behaviors. TBN significantly increased the survival of RGCs after NMDA insult, recovered the amplitude of photopic negative responses to flash, and restored the visual behavior. Furthermore, TBN inhibited the apoptotic process, as indicated by the elevated ratios of cleaved caspase-3/caspase-3 and of Bax/Bcl-2, and decreased the level of reactive oxygen species. Moreover, TBN reduced RGC's calcium overload induced by NMDA or by KCl. Whole-cell patch recording from RGCs further showed that TBN slightly but significantly inhibited L-type calcium channels, but had little effect on T-type calcium channel or NMDA-, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid(AMPA)-induced current. Thus our data indicate that TBN alleviates NMDA-elicited injury of rat RGCs both morphologically and functionally, possibly by inhibiting the L-type calcium channel thus reducing Ca2+ overload and by directly scavenging free radicals. Therefore, TBN may be a novel candidate for treating excitotoxicity-related visual disorders such as glaucoma.


Assuntos
Agonistas de Aminoácidos Excitatórios/toxicidade , N-Metilaspartato/antagonistas & inibidores , N-Metilaspartato/toxicidade , Fármacos Neuroprotetores/farmacologia , Pirazinas/farmacologia , Células Ganglionares da Retina/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Eletrorretinografia , Feminino , Injeções , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Visão Ocular/efeitos dos fármacos , Corpo Vítreo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa