Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 53(13): 7913-7920, 2019 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31188572

RESUMO

Coal-fired power plants represent the largest source of mercury emissions worldwide. Using fly ash, a byproduct of these plants, as a sorbent to remove mercury has proven to be difficult. Here, we found that the fresh surface of modified fly ash has good adsorption performance, and it declines obviously with time because of unsaturation characteristics on surface. On the basis of this mechanism, our study provides a method to in situ capture mercury with high surface energy modified fly ash by mechanochemical and bromide treatment. Fresh modified fly ash with active sites is injected into the flue to directly adsorb mercury. A continuous system within a full-scale 300 MWe plant showed that the mercury adsorption performance of the modified fly ash is similar to that of activated carbon, which is the industry benchmark for the treatment of mercury emission in fossil power generation units. This is a breakthrough and indicates that modified fly ash can become an efficient and convenient industrial sorbent for the removal of mercury.


Assuntos
Poluentes Atmosféricos , Mercúrio , Adsorção , Carvão Mineral , Cinza de Carvão , Centrais Elétricas
2.
Angew Chem Int Ed Engl ; 53(20): 5165-9, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24700513

RESUMO

Despite the promising application of porous Si-based anodes in future Li ion batteries, the large-scale synthesis of these materials is still a great challenge. A scalable synthesis of porous Si materials is presented by the Rochow reaction, which is commonly used to produce organosilane monomers for synthesizing organosilane products in chemical industry. Commercial Si microparticles reacted with gas CH3 Cl over various Cu-based catalyst particles to substantially create macropores within the unreacted Si accompanying with carbon deposition to generate porous Si/C composites. Taking advantage of the interconnected porous structure and conductive carbon-coated layer after simple post treatment, these composites as anodes exhibit high reversible capacity and long cycle life. It is expected that by integrating the organosilane synthesis process and controlling reaction conditions, the manufacture of porous Si-based anodes on an industrial scale is highly possible.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Eletrodos , Lítio/química , Silício/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Análise Espectral Raman , Difração de Raios X
3.
J Nanosci Nanotechnol ; 13(2): 1530-4, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23646676

RESUMO

We report the preparation and characterization of mesoporous hollow CuO (MPH-CuO) microspheres by thermal decomposition of hollow copper oxalate microspheres synthesized via the reaction of ammonium oxalate and copper chloride without using any template. The sample was characterized by Nitrogen adsorption, X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The electrochemical performance of MPH-CuO microspheres as anode materials in Li-ion batteries was evaluated. It was found that the MPH-CuO microspheres possessed an average diameter of 2.5 microm, a pore size of 17.5 nm, and a BET surface area of 15.2 m2/g. Their shells were composed of CuO nanocrystals with a size of 17.9 nm. Compared with the dense CuO microspheres, the obtained MPH-CuO shows an enhanced electrochemical performance with a higher capacity of 599.4 mAh/g and a better cyclability (484 mAh/g after 15 cycles) because of its mesoporous hollow structure that provides quick intercalation and large accommodation of lithium ions together with short diffusion distance for lithium ions, suggesting a potential application in Li-ion batteries.

4.
ACS Nano ; 12(4): 3587-3599, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29630825

RESUMO

Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO2, Si3N4, Ag, Ti, Ta, SnIn2O5, Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al2O3, HfO2, and TiO2) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H2-reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

5.
Nat Commun ; 8: 16100, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28748956

RESUMO

Single-atom metal catalysts offer a promising way to utilize precious noble metal elements more effectively, provided that they are catalytically active and sufficiently stable. Herein, we report a synthetic strategy for Pt single-atom catalysts with outstanding stability in several reactions under demanding conditions. The Pt atoms are firmly anchored in the internal surface of mesoporous Al2O3, likely stabilized by coordinatively unsaturated pentahedral Al3+ centres. The catalyst keeps its structural integrity and excellent performance for the selective hydrogenation of 1,3-butadiene after exposure to a reductive atmosphere at 200 °C for 24 h. Compared to commercial Pt nanoparticle catalyst on Al2O3 and control samples, this system exhibits significantly enhanced stability and performance for n-hexane hydro-reforming at 550 °C for 48 h, although agglomeration of Pt single-atoms into clusters is observed after reaction. In CO oxidation, the Pt single-atom identity was fully maintained after 60 cycles between 100 and 400 °C over a one-month period.

6.
Nanoscale ; 8(47): 19684-19695, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27874142

RESUMO

Despite intensive research into support substrates for the dispersal of nanoparticles and their applications, there has been a lack of general methods to produce metal oxide hollow substrates supporting a wide range of metal and metal oxides. Herein, a synthetic protocol for the preparation of CuO hollow structure-supported MOx (M = Zn, Fe, Ni, Sn, Mn, Co, Ce, Mg, and Ag) and noble metals (Pt and Au) with the desired properties and shell structure, such as CuO/Fe2O3, CuO/ZnO, CuO/SnO2, CuO/MgO, CuO/NiO, CuO/Mn2O3, CuO/CoO, CuO/CeO2, CuO/Ag2O, CuO/Pt, CuO/Au hollow cubes, CuO/ZnO double-shell hollow cubes, CuO/SnO2 double-shell hollow octahedra, CuO/SnO2/Fe2O3 and CuO/Mn2O3/NiO double-shell hollow cubes, was developed based on controlled calcination and etching. These hybrid hollow structures were employed not only as support substrates but also as active constituents for catalytic reactions. As an example, we demonstrated that CuO/ZnO hollow cubes are remarkably efficient in converting solid chitin biomass to liquid chemicals in methanol. In addition, CuO/ZnO double-shell hollow cubes were highly effective in the oxidation of benzyl alcohol in the presence of H2O2, whereas CuO/Pt and CuO/Au hollow cubes promoted the oxidation of benzyl alcohol in pure O2. The strategy developed in this work extends the controllable fabrication of high-quality CuO hollow structure-supported nanoparticles using various compositions and shell structures, paving the way to the exploration and systematic comparison of these materials in a wider range of applications.

7.
ACS Appl Mater Interfaces ; 7(11): 6300-9, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25738385

RESUMO

The yolk-shell hollow structure of transition metal oxides has many applications in lithium-ion batteries and catalysis. However, it is still a big challenge to fabricate uniform hollow microspheres with the yolk bishell structure for mixed transition metal oxides and their supported or embedded forms in carbon microspheres with superior lithium storage properties. Here we report a new approach to the synthesis of manganese cobalt iron oxides/carbon (MnxCo1-xFe2O4 (0 ≤ x ≤ 1)) microspheres through carbonization of Mn(2+)Co(2+)Fe(3+)/carbonaceous microspheres in N2, which can be directly applied as high-performance anodes with a long cycle life for lithium storage. Furthermore, uniform hollow microspheres with a MnxCo1-xFe2O4 yolk bishell structure are obtained by annealing the above MnxCo1-xFe2O4/carbon microspheres in air. As demonstrated, these anodes exhibited a high reversible capacity of 498.3 mAh g(-1) even after 500 cycles for Mn0.5Co0.5Fe2O4/carbon microspheres and 774.6 mAh g(-1) over 100 cycles for Mn0.5Co0.5Fe2O4 yolk bishell hollow microspheres at the current density of 200 mA g(-1). The present strategy not only develops a high-performance anode material with long cycle life for lithium-ion batteries but also demonstrates a novel and feasible technique for designed synthesis of transition metal oxides yolk bishell hollow microspheres with various applications.

8.
Nanoscale ; 6(1): 371-7, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24201898

RESUMO

We report the growth of linked silicon/carbon (Si/C) nanospheres on Cu substrate as an integrated anode for Li-ion batteries. The Si/C nanospheres were synthesized by a catalytic chemical vapor deposition (CCVD) on Cu substrate as current collector using methyltrichlorosilane as precursor, a cheap by-product of the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, thermal gravimetry, Raman spectroscopy, nitrogen adsorption, inductively coupled plasma optical emission spectrometry, and X-ray photoelectron spectroscopy. It was found that the linked Si/C nanospheres with a diameter of 400-500 nm contain Si, Cu(x)Si, and Cu nanocrystals, which are highly dispersed in the amorphous carbon nanospheres. A CCVD mechanism was tentatively proposed, in which the evaporated Cu atoms play a critical role to catalytically grown Si nanocrystals embedded within linked Si/C nanospheres. The electrochemical measurement shows that these Si/C nanospheres delivered a capacity of 998.9, 713.1, 320.6, and 817.8 mA h g(-1) at 50, 200, 800, and 50 mA g(-1) respectively after 50 cycles, much higher than that of commercial graphite anode. This is because the amorphous carbon, Cu(x)Si, and Cu in the Si/C nanospheres could buffer the volume change of Si nanocrystals during the Li insertion and extraction reactions, thus hindering the cracking or crumbling of the electrode. Furthermore, the incorporation of conductive Cu(x)Si and Cu nanocrystals and the integration of active electrode materials with Cu substrate may improve the electrical conductivity from the current collector to individual Si active particles, resulting in a remarkably enhanced reversible capacity and cycling stability. The work will be helpful in the fabrication of low cost binder-free Si/C anode materials for Li-ion batteries.


Assuntos
Cobre/química , Fontes de Energia Elétrica , Lítio/química , Nanosferas/química , Carbono/química , Técnicas Eletroquímicas , Íons/química , Silício/química
9.
Nanoscale ; 6(12): 6805-11, 2014 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-24827728

RESUMO

We report the preparation of Mn(0.5)Co(0.5)Fe2O4 (MCFO) nanoparticles highly dispersed within porous carbon microspheres as anodes for Li-ion batteries. In situ growth of MCFO nanoparticles (5-20 nm) on the surface of carbon black (CB) and graphitized carbon black (GCB) nanoparticles was conducted via a hydrothermal method to form MCFO-CB and MCFO-GCB composites, respectively, which were employed as building blocks to assemble MCFO-CB and MCFO-GCB porous microspheres (PM) with a size of 5-30 µm by the spray drying technique using sucrose as a binder, and followed by carbonization in N2 (labeled as MCFO-CB-PM and MCFO-GCB-PM, respectively). Compared with the pure MCFO, MCFO-CB, and MCFO-GCB, both MCFO-CB-PM and MCFO-GCB-PM showed a significantly improved electrochemical performance. This is attributed to their unique porous structure, in which, the abundant pores promote the diffusion of Li-ion and electrolyte solution, the microspherical morphology enhances the electrode-electrolyte contact, and the carbon substrates from CB (and GCB) and sucrose substantially prevent the aggregation of MCFO nanoparticles and buffer the volume change. Particularly, MCFO-GCB-PM exhibits the best rate performance and excellent cycling stability because of the high graphitization degree of GCB. This work opens up an effective route for large scale fabrication of metal oxide/carbon porous microspheres as anode materials for potential applications in the new generation of Li-ion batteries.

10.
J Colloid Interface Sci ; 398: 185-92, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23489612

RESUMO

We report the synthesis and characterization of the mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for Li-ion batteries. MnFe2O4 microspheres were synthesized by a facile solvothermal method using Mn(CH3COO)2 and FeCl3 as metal precursors in the presence of CH3COOK, CH3COOC2H5, and HOCH2CH2OH. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric, X-ray photoelectron spectroscopy, temperature programmed reduction, and temperature programmed oxidation. The synthesized mesoporous MnFe2O4 microspheres composed of nanoparticles (10-30 nm) were 100-500 nm in diameter and had surface areas between 60.2 and 86.8 m(2) g(-1), depending on the CH3COOK amounts added in the preparation. After calcined at 600°C, MnFe2O4 was decomposed to Mn2O3 and Fe2O3 mixture. The mesoporous MnFe2O4 microspheres calcined at 400°C showed a capacity of 712.2 mA h g(-1) at 0.2C and 552.2 mA h g(-1) at 0.8C after 50 cycles, and an average capacity fading rate of around 0.28%/cycle and 0.48%/cycle, much better than those of the samples without calcination and calcined at 600°C. The work would be helpful in the fabrication of binary metal oxide anode materials for Li-ion batteries.

11.
Nanoscale ; 5(12): 5384-9, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23652614

RESUMO

We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.


Assuntos
Carbono/química , Fontes de Energia Elétrica , Lítio/química , Nanosferas/química , Silanos/química , Silício/química , Eletrodos , Gases/química , Íons/química , Nanosferas/ultraestrutura
12.
ACS Appl Mater Interfaces ; 4(3): 1295-302, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22364243

RESUMO

Porous cubic Cu microparticles were synthesized by a facile solvothermal method using Cu(CH(3)COO)(2)·H(2)O as the Cu precursor and NaOH in a solution containing ethanol, ethylene glycol, and water. The synthesis conditions were investigated and a growth process of porous cubic Cu microparticles was proposed. The catalytic properties of the porous Cu microparticles as model copper catalysts for Rochow reaction were explored. The samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, temperature-programmed reduction, and nitrogen adsorption. It was found that the morphology and structure of the porous cubic Cu microparticles are highly dependent on the reaction time and temperature as well as on the amount of reactants added. Compared to the commercial Cu microparticles with irregular morphology and dense internal structure, porous cubic Cu microparticles show much higher dimethyldichlorosilane selectivity and Si conversion via Rochow reaction, which are attributed to the enhanced formation of active Cu(x)Si phase and gas transportation in the presence of the pore system within microparticles, demonstrating the significance of the pore structure of the copper catalysts in catalytic reactions of organosilane synthesis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa